Recursive sequence

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 249    Accepted Submission(s): 140

Problem Description
Farmer John likes to play mathematics games with his N cows. Recently, they are attracted by recursive sequences. In each turn, the cows would stand in a line, while John writes two positive numbers a and b on a blackboard. And then, the cows would say their identity number one by one. The first cow says the first number a and the second says the second number b. After that, the i-th cow says the sum of twice the (i-2)-th number, the (i-1)-th number, and i4. Now, you need to write a program to calculate the number of the N-th cow in order to check if John’s cows can make it right. 
 
Input
The first line of input contains an integer t, the number of test cases. t test cases follow.
Each case contains only one line with three numbers N, a and b where N,a,b < 231 as described above.
 
Output
For each test case, output the number of the N-th cow. This number might be very large, so you need to output it modulo 2147493647.
 
Sample Input
2
3 1 2
4 1 10
 
Sample Output
85
369

Hint

In the first case, the third number is 85 = 2*1十2十3^4.
In the second case, the third number is 93 = 2*1十1*10十3^4 and the fourth number is 369 = 2 * 10 十 93 十 4^4.

 
Source
 
Recommend
jiangzijing2015   |   We have carefully selected several similar problems for you:  5960 5959 5958 5957 5956 
 

Statistic | Submit | Discuss | Note

题目链接:

  http://acm.hdu.edu.cn/showproblem.php?pid=5950

题目大意:

  Fi=Fi-1+2Fi-2+i4。给定F1和F2求Fn

题目思路:

  【递推+矩阵快速幂】

  现场用算了1个多小时的公式过了。

  主要还是我太菜。递推写的太少。

  先考虑f(i)=f(i-1)+2f(i-2),很容易写出递推矩阵

    0 2

    1 1

  (i+1)4=i4+4i3+6i2+4i+1。

  所以需要在递推矩阵种存下i的4 3 2 1 0次幂,以便推出(i+1)4,矩阵为

    1 0 0 0 0

    4 1 0 0 0

    6 3 1 0 0

    4 3 2 1 0

    1 1 1 1 1

  于是f={fi-1,fi,i4,i3,i2,i1,i0},将以上两个矩阵合并,即可推出{fi,fi+1,(i+1)4,(i+1)3,(i+1)2,(i+1)1,(i+1)0}.矩阵如下

    0 2 0 0 0 0 0

    1 1 0 0 0 0 0

    0 1 1 0 0 0 0

    0 4 4 1 0 0 0

    0 6 6 3 1 0 0

    0 4 4 3 2 1 0

    0 1 1 1 1 1 1

  推出转移矩阵后只需要根据n求矩阵快速幂即可。

 //
//by coolxxx
//#include<bits/stdc++.h>
#include<iostream>
#include<algorithm>
#include<string>
#include<iomanip>
#include<map>
#include<stack>
#include<queue>
#include<set>
#include<bitset>
#include<memory.h>
#include<time.h>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
//#include<stdbool.h>
#include<math.h>
#pragma comment(linker,"/STACK:1024000000,1024000000")
#define min(a,b) ((a)<(b)?(a):(b))
#define max(a,b) ((a)>(b)?(a):(b))
#define abs(a) ((a)>0?(a):(-(a)))
#define lowbit(a) (a&(-a))
#define sqr(a) ((a)*(a))
#define swap(a,b) ((a)^=(b),(b)^=(a),(a)^=(b))
#define mem(a,b) memset(a,b,sizeof(a))
#define eps (1e-8)
#define J 10000
#define mod 2147493647
#define MAX 0x7f7f7f7f
#define PI 3.14159265358979323
#define N 14
#define M 7
using namespace std;
typedef long long LL;
double anss;
LL aans;
int cas,cass;
int n,m,lll,ans;
LL f[N];
LL a[N][N];
LL ma[N][N]={{},
{,,,,,,,},
{,,,,,,,},
{,,,,,,,},
{,,,,,,,},
{,,,,,,,},
{,,,,,,,},
{,,,,,,,}};
void multi(LL a[][N],LL b[][N],LL c[][N])
{
int i,j,k;
LL t[N][N];
mem(t,);
for(i=;i<=M;i++)
for(j=;j<=M;j++)
for(k=;k<=M;k++)
t[i][j]=(t[i][j]+a[i][k]*b[k][j]%mod)%mod;
memcpy(c,t,sizeof(t));
}
void mi(LL a[][N],int y)
{
LL tmp[N][N];
mem(tmp,);
tmp[][]=tmp[][]=tmp[][]=tmp[][]=tmp[][]=tmp[][]=tmp[][]=;
while(y)
{
if(y&)multi(tmp,a,tmp);
y>>=;multi(a,a,a);
}
memcpy(a,tmp,sizeof(tmp));
}
void work()
{
LL t[N];
mem(t,);
int i,j;
for(i=;i<=M;i++)
for(j=;j<=M;j++)
t[i]=(t[i]+f[j]*a[j][i]%mod)%mod;
memcpy(f,t,sizeof(t));
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("1.txt","r",stdin);
// freopen("2.txt","w",stdout);
#endif
int i,j,k;
int x,y,z;
// init();
for(scanf("%d",&cass);cass;cass--)
// for(scanf("%d",&cas),cass=1;cass<=cas;cass++)
// while(~scanf("%s",s))
// while(~scanf("%d%d",&n,&m))
{
memcpy(a,ma,sizeof(a));
scanf("%d%lld%lld",&n,&f[],&f[]);
f[]=,f[]=,f[]=,f[]=,f[]=;
if(n==)
{
printf("%lld\n",f[]);
continue;
}
mi(a,n-);
work();
printf("%lld\n",f[]);
}
return ;
}
/*
// //
*/

HDU 5950 Recursive sequence 【递推+矩阵快速幂】 (2016ACM/ICPC亚洲区沈阳站)的更多相关文章

  1. HDU 5952 Counting Cliques 【DFS+剪枝】 (2016ACM/ICPC亚洲区沈阳站)

    Counting Cliques Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

  2. HDU 5949 Relative atomic mass 【模拟】 (2016ACM/ICPC亚洲区沈阳站)

    Relative atomic mass Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Oth ...

  3. hdu 5950 Recursive sequence 递推式 矩阵快速幂

    题目链接 题意 给定\(c_0,c_1,求c_n(c_0,c_1,n\lt 2^{31})\),递推公式为 \[c_i=c_{i-1}+2c_{i-2}+i^4\] 思路 参考 将递推式改写\[\be ...

  4. HDU 5950 Recursive sequence 递推转矩阵

    Recursive sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Other ...

  5. hdu 2604 递推 矩阵快速幂

    HDU 2604 Queuing (递推+矩阵快速幂) 这位作者讲的不错,可以看看他的 #include <cstdio> #include <iostream> #inclu ...

  6. HDU 5948 Thickest Burger 【模拟】 (2016ACM/ICPC亚洲区沈阳站)

    Thickest Burger Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  7. HDU 5950 - Recursive sequence - [矩阵快速幂加速递推][2016ACM/ICPC亚洲区沈阳站 Problem C]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5950 Farmer John likes to play mathematics games with ...

  8. Recursive sequence HDU - 5950 (递推 矩阵快速幂优化)

    题目链接 F[1] = a, F[2] = b, F[i] = 2 * F[i-2] + F[i-1] + i ^ 4, (i >= 3) 现在要求F[N] 类似于斐波那契数列的递推式子吧, 但 ...

  9. HDU - 5950 Recursive sequence(二项式+矩阵合并+矩阵快速幂)

    Recursive sequence Farmer John likes to play mathematics games with his N cows. Recently, they are a ...

随机推荐

  1. javascript 函数学习

    1.自以为好的部分,更多访问: http://www.runoob.com/js/js-tutorial.html 2.this 3.new 4.闭包 5.自执行

  2. IDE开发<LER-Studio>(2)::登录模块

    软件中写登录模块是为了防止软件的恶意传播,内测阶段可以忽略登录. 以下为登录模块主要源代码: void CLoginDlg::OnBnClickedBtnLogin() { // TODO: Add ...

  3. IOS 学习笔记 2015-03-20 O之 nil,Nil,NULL,NSNull

    1.oc最好 用nil   [ nil  任意方法],不会崩溃 nil 是一个对象值.NULL是一个通用指针(泛型指针). 2. NSNULL,NULL和nil在本质上应该是一样的,NULL和nil其 ...

  4. java实现qq邮箱每天定时发送邮件

    本周四的时候去学校的某机构值班,主要工作是帮老师送文件,干一些杂活.那天没有什么活儿,于是想起用Java实现发送邮件和接收邮件的功能.前几天接触过一点quartz框架,用来实现定时开始任务的功能.于是 ...

  5. linux ptheard 生产者消费者

    ;     {           {          printf(         pthread_mutex_lock(&mutex);            != g_iBufSiz ...

  6. Hibernate持久化对象

    持久化类应遵循的规则: 有无参构造器,构造器的修饰符>=默认访问控制符 有标识属性,映射数据库表的主键,建议使用基本类型的包装类 每个成员有setter和getter 非final修饰的类 重写 ...

  7. c#集合解析

    什么是集合(collection)? 提供了一种结构化组织任意对象的方式,从.NET 的角度看,所谓的集合可以定义为一种对象,这种对象实现一个或者多个System.Collections.IColle ...

  8. php远程读取json的方法

    <?php /** * @author 懒人 <service@kuitao8.com> * @since 2.0 */ header("Content-type:text ...

  9. 简洁代码---python---string

    判断字符串是否是回文的,即是否中心对称的: >>>return s[::-1] == s 对称返回True, 否则返回False

  10. LightOj_1408 Batting Practice

    题目链接 题意: 击球训练中, 你击中一个球的概率为p,连续击中k1个球, 或者连续击空k2个球, 则训练结束. 求结束训练所击球次数的期望. 思路: 设f[x]为连续击中x个球, 距离结束训练所需要 ...