Recursive sequence

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 249    Accepted Submission(s): 140

Problem Description
Farmer John likes to play mathematics games with his N cows. Recently, they are attracted by recursive sequences. In each turn, the cows would stand in a line, while John writes two positive numbers a and b on a blackboard. And then, the cows would say their identity number one by one. The first cow says the first number a and the second says the second number b. After that, the i-th cow says the sum of twice the (i-2)-th number, the (i-1)-th number, and i4. Now, you need to write a program to calculate the number of the N-th cow in order to check if John’s cows can make it right. 
 
Input
The first line of input contains an integer t, the number of test cases. t test cases follow.
Each case contains only one line with three numbers N, a and b where N,a,b < 231 as described above.
 
Output
For each test case, output the number of the N-th cow. This number might be very large, so you need to output it modulo 2147493647.
 
Sample Input
2
3 1 2
4 1 10
 
Sample Output
85
369

Hint

In the first case, the third number is 85 = 2*1十2十3^4.
In the second case, the third number is 93 = 2*1十1*10十3^4 and the fourth number is 369 = 2 * 10 十 93 十 4^4.

 
Source
 
Recommend
jiangzijing2015   |   We have carefully selected several similar problems for you:  5960 5959 5958 5957 5956 
 

Statistic | Submit | Discuss | Note

题目链接:

  http://acm.hdu.edu.cn/showproblem.php?pid=5950

题目大意:

  Fi=Fi-1+2Fi-2+i4。给定F1和F2求Fn

题目思路:

  【递推+矩阵快速幂】

  现场用算了1个多小时的公式过了。

  主要还是我太菜。递推写的太少。

  先考虑f(i)=f(i-1)+2f(i-2),很容易写出递推矩阵

    0 2

    1 1

  (i+1)4=i4+4i3+6i2+4i+1。

  所以需要在递推矩阵种存下i的4 3 2 1 0次幂,以便推出(i+1)4,矩阵为

    1 0 0 0 0

    4 1 0 0 0

    6 3 1 0 0

    4 3 2 1 0

    1 1 1 1 1

  于是f={fi-1,fi,i4,i3,i2,i1,i0},将以上两个矩阵合并,即可推出{fi,fi+1,(i+1)4,(i+1)3,(i+1)2,(i+1)1,(i+1)0}.矩阵如下

    0 2 0 0 0 0 0

    1 1 0 0 0 0 0

    0 1 1 0 0 0 0

    0 4 4 1 0 0 0

    0 6 6 3 1 0 0

    0 4 4 3 2 1 0

    0 1 1 1 1 1 1

  推出转移矩阵后只需要根据n求矩阵快速幂即可。

 //
//by coolxxx
//#include<bits/stdc++.h>
#include<iostream>
#include<algorithm>
#include<string>
#include<iomanip>
#include<map>
#include<stack>
#include<queue>
#include<set>
#include<bitset>
#include<memory.h>
#include<time.h>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
//#include<stdbool.h>
#include<math.h>
#pragma comment(linker,"/STACK:1024000000,1024000000")
#define min(a,b) ((a)<(b)?(a):(b))
#define max(a,b) ((a)>(b)?(a):(b))
#define abs(a) ((a)>0?(a):(-(a)))
#define lowbit(a) (a&(-a))
#define sqr(a) ((a)*(a))
#define swap(a,b) ((a)^=(b),(b)^=(a),(a)^=(b))
#define mem(a,b) memset(a,b,sizeof(a))
#define eps (1e-8)
#define J 10000
#define mod 2147493647
#define MAX 0x7f7f7f7f
#define PI 3.14159265358979323
#define N 14
#define M 7
using namespace std;
typedef long long LL;
double anss;
LL aans;
int cas,cass;
int n,m,lll,ans;
LL f[N];
LL a[N][N];
LL ma[N][N]={{},
{,,,,,,,},
{,,,,,,,},
{,,,,,,,},
{,,,,,,,},
{,,,,,,,},
{,,,,,,,},
{,,,,,,,}};
void multi(LL a[][N],LL b[][N],LL c[][N])
{
int i,j,k;
LL t[N][N];
mem(t,);
for(i=;i<=M;i++)
for(j=;j<=M;j++)
for(k=;k<=M;k++)
t[i][j]=(t[i][j]+a[i][k]*b[k][j]%mod)%mod;
memcpy(c,t,sizeof(t));
}
void mi(LL a[][N],int y)
{
LL tmp[N][N];
mem(tmp,);
tmp[][]=tmp[][]=tmp[][]=tmp[][]=tmp[][]=tmp[][]=tmp[][]=;
while(y)
{
if(y&)multi(tmp,a,tmp);
y>>=;multi(a,a,a);
}
memcpy(a,tmp,sizeof(tmp));
}
void work()
{
LL t[N];
mem(t,);
int i,j;
for(i=;i<=M;i++)
for(j=;j<=M;j++)
t[i]=(t[i]+f[j]*a[j][i]%mod)%mod;
memcpy(f,t,sizeof(t));
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("1.txt","r",stdin);
// freopen("2.txt","w",stdout);
#endif
int i,j,k;
int x,y,z;
// init();
for(scanf("%d",&cass);cass;cass--)
// for(scanf("%d",&cas),cass=1;cass<=cas;cass++)
// while(~scanf("%s",s))
// while(~scanf("%d%d",&n,&m))
{
memcpy(a,ma,sizeof(a));
scanf("%d%lld%lld",&n,&f[],&f[]);
f[]=,f[]=,f[]=,f[]=,f[]=;
if(n==)
{
printf("%lld\n",f[]);
continue;
}
mi(a,n-);
work();
printf("%lld\n",f[]);
}
return ;
}
/*
// //
*/

HDU 5950 Recursive sequence 【递推+矩阵快速幂】 (2016ACM/ICPC亚洲区沈阳站)的更多相关文章

  1. HDU 5952 Counting Cliques 【DFS+剪枝】 (2016ACM/ICPC亚洲区沈阳站)

    Counting Cliques Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

  2. HDU 5949 Relative atomic mass 【模拟】 (2016ACM/ICPC亚洲区沈阳站)

    Relative atomic mass Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Oth ...

  3. hdu 5950 Recursive sequence 递推式 矩阵快速幂

    题目链接 题意 给定\(c_0,c_1,求c_n(c_0,c_1,n\lt 2^{31})\),递推公式为 \[c_i=c_{i-1}+2c_{i-2}+i^4\] 思路 参考 将递推式改写\[\be ...

  4. HDU 5950 Recursive sequence 递推转矩阵

    Recursive sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Other ...

  5. hdu 2604 递推 矩阵快速幂

    HDU 2604 Queuing (递推+矩阵快速幂) 这位作者讲的不错,可以看看他的 #include <cstdio> #include <iostream> #inclu ...

  6. HDU 5948 Thickest Burger 【模拟】 (2016ACM/ICPC亚洲区沈阳站)

    Thickest Burger Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  7. HDU 5950 - Recursive sequence - [矩阵快速幂加速递推][2016ACM/ICPC亚洲区沈阳站 Problem C]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5950 Farmer John likes to play mathematics games with ...

  8. Recursive sequence HDU - 5950 (递推 矩阵快速幂优化)

    题目链接 F[1] = a, F[2] = b, F[i] = 2 * F[i-2] + F[i-1] + i ^ 4, (i >= 3) 现在要求F[N] 类似于斐波那契数列的递推式子吧, 但 ...

  9. HDU - 5950 Recursive sequence(二项式+矩阵合并+矩阵快速幂)

    Recursive sequence Farmer John likes to play mathematics games with his N cows. Recently, they are a ...

随机推荐

  1. SVN的那些事

    1,终端报错:is too old (format 29) to work with client version '1.9.4 (r1740329)' (expects format 31). Yo ...

  2. NSMutableParagraphStyle /NSParagraphStyle

    //   NSParagraphStyleAttributeName 段落的风格(设置首行,行间距,对齐方式什么的)看自己需要什么属性,写什么 NSMutableParagraphStyle *par ...

  3. win7音量控制图标不见了怎么办啦?

    1.打开程序管理器(ctrl+alt+delete)2.在进程那里找到"explorer.exe",然后按结束进程(此时工具栏会消失)3.然后在文件(程序管理器左上角),点击&qu ...

  4. 04_过滤器Filter_04_Filter生命周期

    [Filter生命周期] [init(FilterConfig filterConfig) throws ServletException] *和Servlet程序类似,Filter的创建和销毁由we ...

  5. LA 3516(ZOJ 2641) Exploring Pyramids(递推 DP)

    Exploring Pyramids Archaeologists have discovered a new set of hidden caves in one of the Egyptian p ...

  6. 通过 OpenNI 建立 Kinect 3D Point Cloud

    這篇還是算延續前一篇的<透過 OpneNI 合併 Kinect 深度以及彩色影像資料>.在可以透過 OpenNI 讀取到 Kinect 的深度.色彩資訊之後,其實就可以試著用這些資訊,來重 ...

  7. 学习基于OpenGL的CAD程序的开发计划(一)

    本人目前从事的工作面对的客户中很多来自高端制造业,他们对CAD/CAE/CAM软件的应用比较多.公司现有的软件产品主要是用于渲染展示及交互,但面对诸如CAD方面的应用(比如基于约束的装配.制造工艺的流 ...

  8. (转)UIButton用法详解一

    (注明 来源网址 http://blog.csdn.net/cheneystudy/article/details/8115092)这段代码动态的创建了一个UIButton,并且把相关常用的属性都列举 ...

  9. MySQL主从同步原理 部署【转】

    一.主从的作用:1.可以当做一种备份方式2.用来实现读写分离,缓解一个数据库的压力二.MySQL主从备份原理master 上提供binlog ,slave 通过 I/O线程从 master拿取 bin ...

  10. vim 配置文件 ,高亮+自动缩进+行号+折叠+优化

    vim 配置文件 ,高亮+自动缩进+行号+折叠+优化 将一下代码copy到 用户目录下 新建文件为  .vimrc保存即可生效: 如果想所有用户生效 请修改 /etc/vimrc (建议先cp一份)& ...