主体:

目前最流行的J2SDK版本是1.3系列。使用该版本的开发人员需文件随机存取,就得使用RandomAccessFile类。其I/O性能较之其它常用开发语言的同类性能差距甚远,严重影响程序的运行效率。

开发人员迫切需要提高效率,下面分析RandomAccessFile等文件类的源代码,找出其中的症结所在,并加以改进优化,创建一个"性/价比"俱佳的随机文件访问类BufferedRandomAccessFile。

在改进之前先做一个基本测试:逐字节COPY一个12兆的文件(这里牵涉到读和写)。

耗用时间(秒)
RandomAccessFile RandomAccessFile 95.848
BufferedInputStream + DataInputStream BufferedOutputStream + DataOutputStream 2.935

我们可以看到两者差距约32倍,RandomAccessFile也太慢了。先看看两者关键部分的源代码,对比分析,找出原因。

1.1.[RandomAccessFile]

public class RandomAccessFile implements DataOutput, DataInput {
public final byte readByte() throws IOException {
int ch = this.read();
if (ch < 0)
throw new EOFException();
return (byte)(ch);
}
public native int read() throws IOException;
public final void writeByte(int v) throws IOException {
write(v);
}
public native void write(int b) throws IOException;
}

可见,RandomAccessFile每读/写一个字节就需对磁盘进行一次I/O操作。

1.2.[BufferedInputStream]

public class BufferedInputStream extends FilterInputStream {
private static int defaultBufferSize = 2048;
protected byte buf[]; // 建立读缓存区
public BufferedInputStream(InputStream in, int size) {
super(in);
if (size <= 0) {
throw new IllegalArgumentException("Buffer size <= 0");
}
buf = new byte[size];
}
public synchronized int read() throws IOException {
ensureOpen();
if (pos >= count) {
fill();
if (pos >= count)
return -1;
}
return buf[pos++] & 0xff; // 直接从BUF[]中读取
}
private void fill() throws IOException {
if (markpos < 0)
pos = 0; /* no mark: throw away the buffer */
else if (pos >= buf.length) /* no room left in buffer */
if (markpos > 0) { /* can throw away early part of the buffer */
int sz = pos - markpos;
System.arraycopy(buf, markpos, buf, 0, sz);
pos = sz;
markpos = 0;
} else if (buf.length >= marklimit) {
markpos = -1; /* buffer got too big, invalidate mark */
pos = 0; /* drop buffer contents */
} else { /* grow buffer */
int nsz = pos * 2;
if (nsz > marklimit)
nsz = marklimit;
byte nbuf[] = new byte[nsz];
System.arraycopy(buf, 0, nbuf, 0, pos);
buf = nbuf;
}
count = pos;
int n = in.read(buf, pos, buf.length - pos);
if (n > 0)
count = n + pos;
}
}

1.3.[BufferedOutputStream]

public class BufferedOutputStream extends FilterOutputStream {
protected byte buf[]; // 建立写缓存区
public BufferedOutputStream(OutputStream out, int size) {
super(out);
if (size <= 0) {
throw new IllegalArgumentException("Buffer size <= 0");
}
buf = new byte[size];
}
public synchronized void write(int b) throws IOException {
if (count >= buf.length) {
flushBuffer();
}
buf[count++] = (byte)b; // 直接从BUF[]中读取
}
private void flushBuffer() throws IOException {
if (count > 0) {
out.write(buf, 0, count);
count = 0;
}
}
}

可见,Buffered I/O putStream每读/写一个字节,若要操作的数据在BUF中,就直接对内存的buf[]进行读/写操作;否则从磁盘相应位置填充buf[],再直接对内存的buf[]进行读/写操作,绝大部分的读/写操作是对内存buf[]的操作。

1.3.小结

内存存取时间单位是纳秒级(10E-9),磁盘存取时间单位是毫秒级(10E-3), 同样操作一次的开销,内存比磁盘快了百万倍。理论上可以预见,即使对内存操作上万次,花费的时间也远少对于磁盘一次I/O的开销。 显然后者是通过增加位于内存的BUF存取,减少磁盘I/O的开销,提高存取效率的,当然这样也增加了BUF控制部分的开销。从实际应用来看,存取效率提高了32倍。

 

回页首

根据1.3得出的结论,现试着对RandomAccessFile类也加上缓冲读写机制。

随机访问类与顺序类不同,前者是通过实现DataInput/DataOutput接口创建的,而后者是扩展FilterInputStream/FilterOutputStream创建的,不能直接照搬。

2.1.开辟缓冲区BUF[默认:1024字节],用作读/写的共用缓冲区。

2.2.先实现读缓冲。

读缓冲逻辑的基本原理:

A 欲读文件POS位置的一个字节。

B 查BUF中是否存在?若有,直接从BUF中读取,并返回该字符BYTE。

C 若没有,则BUF重新定位到该POS所在的位置并把该位置附近的BUFSIZE的字节的文件内容填充BUFFER,返回B。

以下给出关键部分代码及其说明:

public class BufferedRandomAccessFile extends RandomAccessFile {
// byte read(long pos):读取当前文件POS位置所在的字节
// bufstartpos、bufendpos代表BUF映射在当前文件的首/尾偏移地址。
// curpos指当前类文件指针的偏移地址。
public byte read(long pos) throws IOException {
if (pos < this.bufstartpos || pos > this.bufendpos ) {
this.flushbuf();
this.seek(pos);
if ((pos < this.bufstartpos) || (pos > this.bufendpos))
throw new IOException();
}
this.curpos = pos;
return this.buf[(int)(pos - this.bufstartpos)];
}
// void flushbuf():bufdirty为真,把buf[]中尚未写入磁盘的数据,写入磁盘。
private void flushbuf() throws IOException {
if (this.bufdirty == true) {
if (super.getFilePointer() != this.bufstartpos) {
super.seek(this.bufstartpos);
}
super.write(this.buf, 0, this.bufusedsize);
this.bufdirty = false;
}
}
// void seek(long pos):移动文件指针到pos位置,并把buf[]映射填充至POS
所在的文件块。
public void seek(long pos) throws IOException {
if ((pos < this.bufstartpos) || (pos > this.bufendpos)) { // seek pos not in buf
this.flushbuf();
if ((pos >= 0) && (pos <= this.fileendpos) && (this.fileendpos != 0))
{ // seek pos in file (file length > 0)
this.bufstartpos = pos * bufbitlen / bufbitlen;
this.bufusedsize = this.fillbuf();
} else if (((pos == 0) && (this.fileendpos == 0))
|| (pos == this.fileendpos + 1))
{ // seek pos is append pos
this.bufstartpos = pos;
this.bufusedsize = 0;
}
this.bufendpos = this.bufstartpos + this.bufsize - 1;
}
this.curpos = pos;
}
// int fillbuf():根据bufstartpos,填充buf[]。
private int fillbuf() throws IOException {
super.seek(this.bufstartpos);
this.bufdirty = false;
return super.read(this.buf);
}
}

至此缓冲读基本实现,逐字节COPY一个12兆的文件(这里牵涉到读和写,用BufferedRandomAccessFile试一下读的速度):

耗用时间(秒)
RandomAccessFile RandomAccessFile 95.848
BufferedRandomAccessFile BufferedOutputStream + DataOutputStream 2.813
BufferedInputStream + DataInputStream BufferedOutputStream + DataOutputStream 2.935

可见速度显著提高,与BufferedInputStream+DataInputStream不相上下。

2.3.实现写缓冲。

写缓冲逻辑的基本原理:

A欲写文件POS位置的一个字节。

B 查BUF中是否有该映射?若有,直接向BUF中写入,并返回true。

C若没有,则BUF重新定位到该POS所在的位置,并把该位置附近的 BUFSIZE字节的文件内容填充BUFFER,返回B。

下面给出关键部分代码及其说明:

// boolean write(byte bw, long pos):向当前文件POS位置写入字节BW。
// 根据POS的不同及BUF的位置:存在修改、追加、BUF中、BUF外等情
况。在逻辑判断时,把最可能出现的情况,最先判断,这样可提高速度。
// fileendpos:指示当前文件的尾偏移地址,主要考虑到追加因素
public boolean write(byte bw, long pos) throws IOException {
if ((pos >= this.bufstartpos) && (pos <= this.bufendpos)) {
// write pos in buf
this.buf[(int)(pos - this.bufstartpos)] = bw;
this.bufdirty = true;
if (pos == this.fileendpos + 1) { // write pos is append pos
this.fileendpos++;
this.bufusedsize++;
}
} else { // write pos not in buf
this.seek(pos);
if ((pos >= 0) && (pos <= this.fileendpos) && (this.fileendpos != 0))
{ // write pos is modify file
this.buf[(int)(pos - this.bufstartpos)] = bw;
} else if (((pos == 0) && (this.fileendpos == 0))
|| (pos == this.fileendpos + 1)) { // write pos is append pos
this.buf[0] = bw;
this.fileendpos++;
this.bufusedsize = 1;
} else {
throw new IndexOutOfBoundsException();
}
this.bufdirty = true;
}
this.curpos = pos;
return true;
}

至此缓冲写基本实现,逐字节COPY一个12兆的文件,(这里牵涉到读和写,结合缓冲读,用BufferedRandomAccessFile试一下读/写的速度):

耗用时间(秒)
RandomAccessFile RandomAccessFile 95.848
BufferedInputStream + DataInputStream BufferedOutputStream + DataOutputStream 2.935
BufferedRandomAccessFile BufferedOutputStream + DataOutputStream 2.813
BufferedRandomAccessFile BufferedRandomAccessFile 2.453

可见综合读/写速度已超越BufferedInput/OutputStream+DataInput/OutputStream。

 

回页首

优化BufferedRandomAccessFile。

优化原则:

  • 调用频繁的语句最需要优化,且优化的效果最明显。
  • 多重嵌套逻辑判断时,最可能出现的判断,应放在最外层。
  • 减少不必要的NEW。

这里举一典型的例子:

   public void seek(long pos) throws IOException {
...
this.bufstartpos = pos * bufbitlen / bufbitlen;
// bufbitlen指buf[]的位长,例:若bufsize=1024,则bufbitlen=10。
...
}

seek函数使用在各函数中,调用非常频繁,上面加重的这行语句根据pos和bufsize确定buf[]对应当前文件的映射位置,用"*"、"/"确定,显然不是一个好方法。

优化一:this.bufstartpos = (pos << bufbitlen) >> bufbitlen;

优化二:this.bufstartpos = pos & bufmask; // this.bufmask = ~((long)this.bufsize - 1);

两者效率都比原来好,但后者显然更好,因为前者需要两次移位运算、后者只需一次逻辑与运算(bufmask可以预先得出)。

至此优化基本实现,逐字节COPY一个12兆的文件,(这里牵涉到读和写,结合缓冲读,用优化后BufferedRandomAccessFile试一下读/写的速度):

耗用时间(秒)
RandomAccessFile RandomAccessFile 95.848
BufferedInputStream + DataInputStream BufferedOutputStream + DataOutputStream 2.935
BufferedRandomAccessFile BufferedOutputStream + DataOutputStream 2.813
BufferedRandomAccessFile BufferedRandomAccessFile 2.453
BufferedRandomAccessFile优 BufferedRandomAccessFile优 2.197

可见优化尽管不明显,还是比未优化前快了一些,也许这种效果在老式机上会更明显。

以上比较的是顺序存取,即使是随机存取,在绝大多数情况下也不止一个BYTE,所以缓冲机制依然有效。而一般的顺序存取类要实现随机存取就不怎么容易了。

 

回页首

需要完善的地方

提供文件追加功能:

    public boolean append(byte bw) throws IOException {
return this.write(bw, this.fileendpos + 1);
}

提供文件当前位置修改功能:

    public boolean write(byte bw) throws IOException {
return this.write(bw, this.curpos);
}

返回文件长度(由于BUF读写的原因,与原来的RandomAccessFile类有所不同):

    public long length() throws IOException {
return this.max(this.fileendpos + 1, this.initfilelen);
}

返回文件当前指针(由于是通过BUF读写的原因,与原来的RandomAccessFile类有所不同):

    public long getFilePointer() throws IOException {
return this.curpos;
}

提供对当前位置的多个字节的缓冲写功能:

    public void write(byte b[], int off, int len) throws IOException {
long writeendpos = this.curpos + len - 1;
if (writeendpos <= this.bufendpos) { // b[] in cur buf
System.arraycopy(b, off, this.buf, (int)(this.curpos - this.bufstartpos),
len);
this.bufdirty = true;
this.bufusedsize = (int)(writeendpos - this.bufstartpos + 1);
} else { // b[] not in cur buf
super.seek(this.curpos);
super.write(b, off, len);
}
if (writeendpos > this.fileendpos)
this.fileendpos = writeendpos;
this.seek(writeendpos+1);
}
public void write(byte b[]) throws IOException {
this.write(b, 0, b.length);
}

提供对当前位置的多个字节的缓冲读功能:

public int read(byte b[], int off, int len) throws IOException {
long readendpos = this.curpos + len - 1;
if (readendpos <= this.bufendpos && readendpos <= this.fileendpos ) {
// read in buf
System.arraycopy(this.buf, (int)(this.curpos - this.bufstartpos),
b, off, len);
} else { // read b[] size > buf[]
if (readendpos > this.fileendpos) { // read b[] part in file
len = (int)(this.length() - this.curpos + 1);
}
super.seek(this.curpos);
len = super.read(b, off, len);
readendpos = this.curpos + len - 1;
}
this.seek(readendpos + 1);
return len;
}
public int read(byte b[]) throws IOException {
return this.read(b, 0, b.length);
}
public void setLength(long newLength) throws IOException {
if (newLength > 0) {
this.fileendpos = newLength - 1;
} else {
this.fileendpos = 0;
}
super.setLength(newLength);
} public void close() throws IOException {
this.flushbuf();
super.close();
}

至此完善工作基本完成,试一下新增的多字节读/写功能,通过同时读/写1024个字节,来COPY一个12兆的文件,(这里牵涉到读和写,用完善后BufferedRandomAccessFile试一下读/写的速度):

耗用时间(秒)
RandomAccessFile RandomAccessFile 95.848
BufferedInputStream + DataInputStream BufferedOutputStream + DataOutputStream 2.935
BufferedRandomAccessFile BufferedOutputStream + DataOutputStream 2.813
BufferedRandomAccessFile BufferedRandomAccessFile 2.453
BufferedRandomAccessFile优 BufferedRandomAccessFile优 2.197
BufferedRandomAccessFile完 BufferedRandomAccessFile完 0.401
 

回页首

与JDK1.4新类MappedByteBuffer+RandomAccessFile的对比?

JDK1.4提供了NIO类 ,其中MappedByteBuffer类用于映射缓冲,也可以映射随机文件访问,可见JAVA设计者也看到了RandomAccessFile的问题,并加以改进。怎么通过MappedByteBuffer+RandomAccessFile拷贝文件呢?下面就是测试程序的主要部分:

RandomAccessFile rafi = new RandomAccessFile(SrcFile, "r");
RandomAccessFile rafo = new RandomAccessFile(DesFile, "rw");
FileChannel fci = rafi.getChannel();
FileChannel fco = rafo.getChannel();
long size = fci.size();
MappedByteBuffer mbbi = fci.map(FileChannel.MapMode.READ_ONLY, 0, size);
MappedByteBuffer mbbo = fco.map(FileChannel.MapMode.READ_WRITE, 0, size);
long start = System.currentTimeMillis();
for (int i = 0; i < size; i++) {
byte b = mbbi.get(i);
mbbo.put(i, b);
}
fcin.close();
fcout.close();
rafi.close();
rafo.close();
System.out.println("Spend: "+(double)(System.currentTimeMillis()-start) / 1000 + "s");

试一下JDK1.4的映射缓冲读/写功能,逐字节COPY一个12兆的文件,(这里牵涉到读和写):

耗用时间(秒)
RandomAccessFile RandomAccessFile 95.848
BufferedInputStream + DataInputStream BufferedOutputStream + DataOutputStream 2.935
BufferedRandomAccessFile BufferedOutputStream + DataOutputStream 2.813
BufferedRandomAccessFile BufferedRandomAccessFile 2.453
BufferedRandomAccessFile优 BufferedRandomAccessFile优 2.197
BufferedRandomAccessFile完 BufferedRandomAccessFile完 0.401
MappedByteBuffer+ RandomAccessFile MappedByteBuffer+ RandomAccessFile 1.209

确实不错,看来JDK1.4比1.3有了极大的进步。如果以后采用1.4版本开发软件时,需要对文件进行随机访问,建议采用MappedByteBuffer+RandomAccessFile的方式。但鉴于目前采用JDK1.3及以前的版本开发的程序占绝大多数的实际情况,如果您开发的JAVA程序使用了RandomAccessFile类来随机访问文件,并因其性能不佳,而担心遭用户诟病,请试用本文所提供的BufferedRandomAccessFile类,不必推翻重写,只需IMPORT 本类,把所有的RandomAccessFile改为BufferedRandomAccessFile,您的程序的性能将得到极大的提升,您所要做的就这么简单。

转载:http://www.ibm.com/developerworks/cn/java/l-javaio/

通过扩展RandomAccessFile类使之具备Buffer改善I/O性能--转载的更多相关文章

  1. 在对文件进行随机读写,RandomAccessFile类,如何提高其效率

    花1K内存实现高效I/O的RandomAccessFile类 JAVA的文件随机存取类(RandomAccessFile)的I/O效率较低.通过分析其中原因,提出解决方案.逐步展示如何创建具备缓存读写 ...

  2. Silverlight实例教程 - 自定义扩展Validation类,验证框架的总结和建议(转载)

    Silverlight 4 Validation验证实例系列 Silverlight实例教程 - Validation数据验证开篇 Silverlight实例教程 - Validation数据验证基础 ...

  3. RandomAccessFile类理解

    一.简述 这个是JDK上的截图,我们可以看到它的父类是Object,没有继承字节流.字符流家族中任何一个类.并且它实现了DataInput.DataOutput这两个接口,也就意味着这个类既可以读也可 ...

  4. ASP.NET MVC 扩展HtmlHelper类为 js ,css 资源文件添加版本号

    写在前面 在项目部署当中会需要更新 css 文件或 js 等资源文件,为了避免由于浏览器缓存的原因无法加载新的 css 或 js ,一般的做法是在资源文件的后面加上一个版本号来解决,这样浏览器就会去服 ...

  5. Scala中使用implict 扩展现有类的方法

    Scala中implict的一种用法就是扩展现有类的方法,有点类似于.Net中的扩展方法(MS对扩展方法的介绍:扩展方法使你能够向现有类型“添加”方法,而无需创建新的派生类型.重新编译或以其他方式修改 ...

  6. RandomAccessFile类——高效快捷地读写文件

    RandomAceessFile类 RandomAccessFile类是一个专门读写文件的类,封装了基本的IO流,在读写文件内容方面比常规IO流更方便.更灵活.但也仅限于读写文件,无法像IO流一样,可 ...

  7. 11.Laravel5学习笔记:扩展 Validator 类

    简单介绍 在 Laravel5 中,本身已经提供了丰富的验证规则供我们使用,可是天下应用奇葩多,做为程序猿你会发现永远都有新的验证规则诞生,光是组合已经解救不了你的项目了.这个时候就须要我们扩展 Va ...

  8. RandomAccessFile类使用说明

    RandomAccessFile类是Java Io体系中功能最为丰富的文件访问类,它提供了众多的文件访问方法.RandomAccessFile类支持“随机访问”方式,这里的“随机”是指程序可以直接跳到 ...

  9. ASP.NET MVC 实现页落网资源分享网站+充值管理+后台管理(7)之扩展基类和区域创建以及文本编辑配置

    一.扩展基类和区域创建 (1)在应用之前,我们先在表现层创建一个公共的系统扩展文件来(SystemExtension)存放我们需要延伸和扩展的方法类. 在常规的项目系统操作中,我们都需要用到增删查改的 ...

随机推荐

  1. 面试后 follow up letter 分享

    分享一下最近面试外企的follow up letter. Dear Mr. Xu,     Thank you again for the time you and Mr. Guo spent wit ...

  2. 手机端QQ客服直接跳转到QQ

    企业QQ呼出QQ对话框方法 1.手机端链接是这样的:mqqwpa://im/chat?chat_type=wpa&uin=386807630&version=1&src_typ ...

  3. dedecms设置文章分页后,标题会带有序号的解决方法

    至于删除分页后标题后面的序号,找到include/arc.archives.class.php 打开,找到 if($i>1) $this->Fields['title'] = $this- ...

  4. Android SurfaceView使用

    与View区别 更新View任务太重会导致UI线程阻塞 而SurfaceView不会,可以在UI线程之外更新UI 工程代码 SurfaceViewDemo.zip ------------------ ...

  5. python学习第五天 List和tuple类型介绍及其List切片

    List 和tuple: python提供一种类似C语言数组的类型,但是使用起来确是相当的简洁.那就讲讲这神奇的python中list 和tuple吧. List类型: 1.直接贴代码: L = [' ...

  6. South入门教程

    对于django自带的syncdb同步models和数据库的缺陷,所以我选择第三方的工具South. 1.安装South:pip install South 2.South设置: 把 south 加到 ...

  7. Sequoyah 本机开发Native Development: Invalid path for NDK(路径无效) 解决方案

    打开window菜单下的preference选项.选择Android,Native Development(本地开发) 选择你的NDK安装目录. 但是,这个插件目前仅支持ndk的r4和r5版本,更高版 ...

  8. 单例模式——使用GCD实现单例模式 & 非ARC单例模式 &使用GCD和线程锁实现单例模式-b

    1.单利模式概述 链接:  iOS开发懒汉模式&恶寒模式 2.使用GCD实现单利模式 2.1新建一个project,然后新建一个HMDataTool类展示GCD实现单例模式 #import & ...

  9. 【Linux】常用命令-统计代码行数

    公司人员流动大,经常有新的维护任务,交接时喜欢看看新来的模块的代码量,那么问题来了, 如何统计代码行数? 1,最先想到的肯定是 wc. wc -l *.h 将查看[当前目录]下头文件的代码行数,输出结 ...

  10. 2014年Facebook的开源成就

    2014是Facebook开源硕果丰硕的一年,其开源项目经理詹姆斯·皮尔斯(James Pearce)连续12天发布开源博客文章展示全年该社交网站在此领域取得的成就. 皮尔斯公布的成就包括以下内容: ...