uva 11178 Morley's Theorem(计算几何-点和直线)
Problem D
Morley’s Theorem
Input: Standard Input
Output: Standard Output
Morley’s theorem states that that the lines trisecting the angles of an arbitrary plane triangle meet at the vertices of an equilateral triangle. For example in the figure below the tri-sectors of angles A, B and C has intersected and created an equilateral
triangle DEF.
Of course the theorem has various generalizations, in particular if all of the tri-sectors are intersected one obtains four other equilateral triangles. But in the original theorem only tri-sectors nearest to BC are allowed to intersect to get point D, tri-sectors
nearest to CA are allowed to intersect point E and tri-sectors nearest to AB are intersected to get point F. Trisector like BD and CE are not allowed to intersect. So ultimately we get only one equilateral triangle DEF. Now your task is to find the Cartesian
coordinates of D, E and F given the coordinates of A, B, and C.
Input
First line of the input file contains an integer N (0<N<5001) which denotes the number of test cases to follow. Each of the next lines contain sixintegers . This six
integers actually indicates that the Cartesian coordinates of point A, B and C are respectively. You can assume that the area of triangle ABC is not equal to zero,
and
the points A, B and C are in counter clockwise order.
Output
For each line of input you should produce one line of output. This line contains six floating point numbers
separated by a single space. These six floating-point
actually means that the Cartesian coordinates of D, E and F are
respectively. Errors less than
will
be accepted.
Sample Input Output for Sample Input
2 1 1 2 2 1 2 0 0 100 0 50 50 |
1.316987 1.816987 1.183013 1.683013 1.366025 1.633975 56.698730 25.000000 43.301270 25.000000 50.000000 13.397460 |
Problemsetters: Shahriar Manzoor
Special Thanks: Joachim Wulff
题目大意:
作三角形的每一个角的三等分射线,相交成的三角形DEF为等边三角形。
解题思路:
通过向量的旋转以及直线的相交,求出对应的交点。
解题代码:
刘汝佳就是牛逼。
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std; struct Point{
double x,y;
Point(double x0=0,double y0=0){
x=x0,y=y0;
}
void read(){
scanf("%lf%lf",&x,&y);
}
}; typedef Point Vector; Vector operator + (Vector A,Vector B) { return Vector(A.x+B.x,A.y+B.y); }
Vector operator - (Vector A,Vector B) { return Vector(A.x-B.x,A.y-B.y); }
Vector operator * (Vector A,double p) { return Vector(A.x*p,A.y*p); }
Vector operator / (Vector A,double p) { return Vector(A.x/p,A.y/p); } double Dot(Vector A,Vector B){ return A.x*B.x+A.y*B.y; }
double Length(Vector A){ return sqrt(Dot(A,A)); }
double Angle(Vector A,Vector B){ return acos(Dot(A,B)/Length(A)/Length(B)); }
double Cross(Vector A,Vector B){ return A.x*B.y-A.y*B.x; }
Vector Rotate(Vector A,double rad){ return Vector(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad)); }//逆时针旋转rad弧度 //必须保证相交,也就是Cross(v,w)非0
Point GetLineIntersection(Point P,Vector v,Point Q,Vector w){
Vector u=P-Q;
double t=Cross(w,u)/Cross(v,w);
return P+v*t;
} Point getD(Point A,Point B,Point C){
double a1=Angle(A-B,C-B);
Vector v1=Rotate(C-B,a1/3.0);
double a2=Angle(A-C,B-C);
Vector v2=Rotate(B-C,-a2/3.0);
return GetLineIntersection(B,v1,C,v2);
} int main(){
int T;
scanf("%d",&T);
while(T-- >0){
Point A,B,C,D,E,F;
A.read();
B.read();
C.read();
D=getD(A,B,C);
E=getD(B,C,A);
F=getD(C,A,B);
printf("%.6lf %.6lf %.6lf %.6lf %.6lf %.6lf\n",D.x,D.y,E.x,E.y,F.x,F.y);
}
return 0;
}
uva 11178 Morley's Theorem(计算几何-点和直线)的更多相关文章
- uva 11178 - Morley's Theorem
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...
- UVA 11178 Morley's Theorem (坐标旋转)
题目链接:UVA 11178 Description Input Output Sample Input Sample Output Solution 题意 \(Morley's\ theorem\) ...
- UVA 11178 Morley's Theorem 计算几何模板
题意:训练指南259页 #include <iostream> #include <cstdio> #include <cstring> #include < ...
- UVA 11178 Morley's Theorem (计算几何)
题目链接 lrj训练指南 P259 //==================================================================== Point getP( ...
- UVA 11178 Morley's Theorem(几何)
Morley's Theorem [题目链接]Morley's Theorem [题目类型]几何 &题解: 蓝书P259 简单的几何模拟,但要熟练的应用模板,还有注意模板的适用范围和传参不要传 ...
- UVa 11178:Morley’s Theorem(两射线交点)
Problem DMorley’s TheoremInput: Standard Input Output: Standard Output Morley’s theorem states that ...
- UVA 11178 - Morley's Theorem 向量
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...
- UVA 11178 Morley's Theorem(旋转+直线交点)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=18543 [思路] 旋转+直线交点 第一个计算几何题,照着书上代码打 ...
- Uva 11178 Morley's Theorem 向量旋转+求直线交点
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=9 题意: Morlery定理是这样的:作三角形ABC每个 ...
随机推荐
- Android中WebView的JavaScript代码和本地代码交互的三种方式
一.Android中WebView的漏洞分析最近在开发过程中遇到一个问题,就是WebView使用的时候,还是需要解决之前系统(4.2之前)导致的一个漏洞,虽然现在这个系统版本用户很少了,但是也不能忽视 ...
- PHP创建桌面快捷方式实例
要利用php创建桌面快捷方式我们需要借助于header,InternetShortcut及一些我看不懂的代码. 方法:新建一个php文件,然后把下面的代码扔进去,保存为比如shortcut.php,放 ...
- shell 常用
/etc/password 用户的 home路径设置 chwon groupname:username path_or_file -R # 修改文件左右者 chomd
- Asp.net MVC中三大描述对象之ActionDescriptor 以及继承类ReflectedControllerDescriptor
ActionDescriptor抽象类中几个基本的属性: ControllerName:被描述的Controller名称,去除后缀Controller的名称.例如:HomeController则为Ho ...
- Django1.7.1设置TEMPLATE_DIRS
首先附上我的django工程目录结构: mysite│ db.sqlite3│ manage.py│├─mysite │ settings.py │ urls.py │ views.py ...
- JNI-Test
//testdll.h/* DO NOT EDIT THIS FILE - it is machine generated */ #include <jni.h> /* Header fo ...
- bzoj 3505: [Cqoi2014]数三角形 组合数学
3505: [Cqoi2014]数三角形 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 478 Solved: 293[Submit][Status ...
- MockupBuilder
玩一下,想起了以前公司产品经理作的些事了...
- Ubuntu小技巧——怎样安装谷歌Chrome浏览器
对于刚刚开始使用Ubuntu并想安装谷歌Chrome浏览器的新用户来说,本文所介绍的方法是最快捷的.在Ubuntu上安装谷歌Chrome的方法有很多.一些用户喜欢直接在谷歌Chrome下载页面获得 d ...
- CountDownLatch的使用
CountDownLatch,一个同步辅助类,在完成一组正在其他线程中执行的操作之前,它允许一个或多个线程一直等待.主要方法public CountDownLatch(int count);publi ...