uva 11178 Morley's Theorem(计算几何-点和直线)
Problem D
Morley’s Theorem
Input: Standard Input
Output: Standard Output
Morley’s theorem states that that the lines trisecting the angles of an arbitrary plane triangle meet at the vertices of an equilateral triangle. For example in the figure below the tri-sectors of angles A, B and C has intersected and created an equilateral
triangle DEF.
Of course the theorem has various generalizations, in particular if all of the tri-sectors are intersected one obtains four other equilateral triangles. But in the original theorem only tri-sectors nearest to BC are allowed to intersect to get point D, tri-sectors
nearest to CA are allowed to intersect point E and tri-sectors nearest to AB are intersected to get point F. Trisector like BD and CE are not allowed to intersect. So ultimately we get only one equilateral triangle DEF. Now your task is to find the Cartesian
coordinates of D, E and F given the coordinates of A, B, and C.
Input
First line of the input file contains an integer N (0<N<5001) which denotes the number of test cases to follow. Each of the next lines contain sixintegers . This six
integers actually indicates that the Cartesian coordinates of point A, B and C are respectively. You can assume that the area of triangle ABC is not equal to zero,
and
the points A, B and C are in counter clockwise order.
Output
For each line of input you should produce one line of output. This line contains six floating point numbers
separated by a single space. These six floating-point
actually means that the Cartesian coordinates of D, E and F are
respectively. Errors less than
will
be accepted.
Sample Input Output for Sample Input
2 1 1 2 2 1 2 0 0 100 0 50 50 |
1.316987 1.816987 1.183013 1.683013 1.366025 1.633975 56.698730 25.000000 43.301270 25.000000 50.000000 13.397460 |
Problemsetters: Shahriar Manzoor
Special Thanks: Joachim Wulff
题目大意:
作三角形的每一个角的三等分射线,相交成的三角形DEF为等边三角形。
解题思路:
通过向量的旋转以及直线的相交,求出对应的交点。
解题代码:
刘汝佳就是牛逼。
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std; struct Point{
double x,y;
Point(double x0=0,double y0=0){
x=x0,y=y0;
}
void read(){
scanf("%lf%lf",&x,&y);
}
}; typedef Point Vector; Vector operator + (Vector A,Vector B) { return Vector(A.x+B.x,A.y+B.y); }
Vector operator - (Vector A,Vector B) { return Vector(A.x-B.x,A.y-B.y); }
Vector operator * (Vector A,double p) { return Vector(A.x*p,A.y*p); }
Vector operator / (Vector A,double p) { return Vector(A.x/p,A.y/p); } double Dot(Vector A,Vector B){ return A.x*B.x+A.y*B.y; }
double Length(Vector A){ return sqrt(Dot(A,A)); }
double Angle(Vector A,Vector B){ return acos(Dot(A,B)/Length(A)/Length(B)); }
double Cross(Vector A,Vector B){ return A.x*B.y-A.y*B.x; }
Vector Rotate(Vector A,double rad){ return Vector(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad)); }//逆时针旋转rad弧度 //必须保证相交,也就是Cross(v,w)非0
Point GetLineIntersection(Point P,Vector v,Point Q,Vector w){
Vector u=P-Q;
double t=Cross(w,u)/Cross(v,w);
return P+v*t;
} Point getD(Point A,Point B,Point C){
double a1=Angle(A-B,C-B);
Vector v1=Rotate(C-B,a1/3.0);
double a2=Angle(A-C,B-C);
Vector v2=Rotate(B-C,-a2/3.0);
return GetLineIntersection(B,v1,C,v2);
} int main(){
int T;
scanf("%d",&T);
while(T-- >0){
Point A,B,C,D,E,F;
A.read();
B.read();
C.read();
D=getD(A,B,C);
E=getD(B,C,A);
F=getD(C,A,B);
printf("%.6lf %.6lf %.6lf %.6lf %.6lf %.6lf\n",D.x,D.y,E.x,E.y,F.x,F.y);
}
return 0;
}
uva 11178 Morley's Theorem(计算几何-点和直线)的更多相关文章
- uva 11178 - Morley's Theorem
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...
- UVA 11178 Morley's Theorem (坐标旋转)
题目链接:UVA 11178 Description Input Output Sample Input Sample Output Solution 题意 \(Morley's\ theorem\) ...
- UVA 11178 Morley's Theorem 计算几何模板
题意:训练指南259页 #include <iostream> #include <cstdio> #include <cstring> #include < ...
- UVA 11178 Morley's Theorem (计算几何)
题目链接 lrj训练指南 P259 //==================================================================== Point getP( ...
- UVA 11178 Morley's Theorem(几何)
Morley's Theorem [题目链接]Morley's Theorem [题目类型]几何 &题解: 蓝书P259 简单的几何模拟,但要熟练的应用模板,还有注意模板的适用范围和传参不要传 ...
- UVa 11178:Morley’s Theorem(两射线交点)
Problem DMorley’s TheoremInput: Standard Input Output: Standard Output Morley’s theorem states that ...
- UVA 11178 - Morley's Theorem 向量
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...
- UVA 11178 Morley's Theorem(旋转+直线交点)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=18543 [思路] 旋转+直线交点 第一个计算几何题,照着书上代码打 ...
- Uva 11178 Morley's Theorem 向量旋转+求直线交点
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=9 题意: Morlery定理是这样的:作三角形ABC每个 ...
随机推荐
- smarty 模板 数字自动添加
section: section的产生是为解决foreach的不足的,与foreach一样,它用于设计模板内的循环块,它较为复杂,可极大程序上满足程序需要,所以在程序中我习惯使用它而不使用foreac ...
- Runtime-b
感谢大神分享 依旧是网上很多runtime的资料,依旧是看不懂,,,这里给大家转化一下runtime,使它由隐晦难懂变得通俗易懂. (虽然截图和语言组织的有些凌乱,但是大家还是一点一点的阅读下去吧,可 ...
- iOS 通知中心扩展制作初步-b
涉及的 Session 有 Creating Extensions for iOS and OS X, Part 1 Creating Extensions for iOS and OS X, Par ...
- 当xcode里点运行出现treating unicode character as whites
可能是由于粘贴网页上的代码的时候两行之间的回车引起的,两行之间重新输入回车就行......删掉重新写一遍就ok了 引入网页上的回车时 可能 网页对其格式做了处理,所以Xcode 不认识了
- server-send event object
http://jamie-wang.iteye.com/blog/1849193 event -- onmessage, onopen, onerror 不是方法,而是事件 http://school ...
- Cow Marathon
poj1985:http://poj.org/problem?id=1985 题意:就是树的直径. 题解:直接DFS即可. #include<iostream> #include<c ...
- JSP页面间传递参数的5种方法
JSP页面间传递参数是经常需要使用到的功能,有时还需要多个JSP页面间传递参数.下面介绍一下实现的方法. (1)直接在URL请求后添加 如:< a href="thexuan.jsp? ...
- 【HDOJ】3308 LCIS
线段树,题目感觉比较难,看别人思路做的.还得继续练这个专题. #include <iostream> #include <cstdio> #include <cstrin ...
- POJ1664
Problem B Time Limit : 2000/1000ms (Java/Other) Memory Limit : 20000/10000K (Java/Other) Total Su ...
- yarn安装部署
在HDFS HA(http://www.cnblogs.com/yinchengzhe/p/5140117.html)基础上进行yarn的安装. 1.配置yarn-site.xml 参数详情参考 ht ...