最小二乘问题:

结合之前给出向量空间中的正交、子空间W、正交投影、正交分解定理、最佳逼近原理,这里就可以比较圆满的解决最小二乘问题了。

首先我们得说明一下问题本身,就是在生产实践过程中,对于巨型线性方程组Ax=b,可能是无解的,但是我们就是迫切的需要一个解,满足这个解是方程的最近似解。

下面我们综合之前给出了一系列概念、定理,来解决这个问题。

首先我们需要给出最近似解的定义:

我们需要站在新的角度来解读线性方程组Ax=b,这样能够帮助我们更好的解决问题。

上文已经给出最小二乘问题最一般化的解法,但是考虑到具体计算好像有点麻烦,我们下面再探讨一种基于上面原理的算法。

《Linear Algebra and Its Applications》-chaper6-正交性和最小二乘法-最小二乘问题的更多相关文章

  1. 《Linear Algebra and Its Applications》-chaper6-正交性和最小二乘法-基本概念与定理

    这一章节我们主要讨论定义在R^n空间上的向量之间的关系,而这个关系概括来讲其实就是正交,然后引入正交投影.最佳逼近定理等,这些概念将为我们在求无解的线性方程组Ax=b的最优近似解打下基石. 正交性: ...

  2. 《Linear Algebra and Its Applications》-chaper1-线性方程组- 线性变换

    两个定理非常的简单显然,似乎是在证明矩阵代数中的基本运算律.但是它为后面用“线性变换”理解矩阵-向量积Ax奠定了理论基础. 结合之前我们讨论过的矩阵和向量的积Ax的性质,下面我们就可以引入线性变换了. ...

  3. 《Linear Algebra and Its Applications》-chaper4-向量空间-子空间、零空间、列空间

    在线性代数中一个非常重要的概念就是向量空间R^n,这一章节将主要讨论向量空间的一系列性质. 一个向量空间是一些向量元素构成的非空集合V,需要满足如下公理: 向量空间V的子空间H需要满足如下三个条件: ...

  4. 《Linear Algebra and Its Applications》-chaper6-正交性和最小二乘法- 格拉姆-施密特方法

    构造R^n子空间W一组正交基的算法:格拉姆-施密特方法.

  5. 《Linear Algebra and Its Applications》-chaper5-特征值与特征向量-基本概念

    基于之前章节的铺垫,我们这里能够很容易的引出特征向量和特征值的概念. 首先我们知道n x n矩阵的A和n维向量v的乘积会得到一个n维的向量,那么现在我们发现,经过计算u=Av,得到的向量u是和v共线的 ...

  6. 《Linear Algebra and Its Applications》-chaper3-行列式-克拉默法则

    计算线性方程组唯一解的克拉默法则:

  7. 《Linear Algebra and Its Applications》-chaper3-行列式-行列式初等变换

    承接上一篇文章对行列式的引入,这篇文章将进一步记录关于行列式的有关内容,包括如下的几个方面: (1)行列式3个初等变换的证明. (2)转置行列式与原行列式相等的证明. (3)定理det(AB) = d ...

  8. 《Linear Algebra and Its Applications》-chaper3-行列式-从一个逆矩阵算法证明引入的行列式

    这一章节开始介绍线性代数中另外一个基本概念——行列式. 其实与矩阵类似,行列式也是作为简化表述多项式的一种工具,关于行列式的历史渊源,有如下的介绍. 在介绍逆矩阵的时候,我们曾提及二阶矩阵有一个基于矩 ...

  9. 《Linear Algebra and Its Applications》-chaper2-矩阵代数-分块矩阵

    分块矩阵的概念: 在矩阵的实际应用中,为了形式的更加简化我们将一个较大的矩阵的内部进行一定的划分,使之成为几个小矩阵,然后在表大矩阵的时候,矩阵的内部元素就用小矩阵代替. 进行了这一步简化,我们就要分 ...

随机推荐

  1. Quartz-2D绘图之概览

    最近公司新项目需求要把数据图形化,趁着这个机会,重温了下Quarts-2D这个强大的跨平台2D绘图引擎. 一.Quartz概述 1.Quartz 2D是一个二维的绘图引擎,支持iOS和Mac OS平台 ...

  2. angular2 组件之间通讯-使用服务通讯模式 2016.10.27 基于正式版ng2

    工作中用到ng2的组件通讯 奈何官方文档言简意赅 没说明白 自己搞明白后 整理后分享下 rxjs 不懂的看这篇文章 讲很详细 http://www.open-open.com/lib/view/ope ...

  3. C/C++之Exercise

    一.C/C++之初学Demo---C++调用C.h文件使用实例: 工程结构: exercise.h code: #ifndef _EXERCISE_H_ #define _EXERCISE_H_ #i ...

  4. 《wc》-linux命令五分钟系列之十七

    本原创文章属于<Linux大棚>博客,博客地址为http://roclinux.cn.文章作者为rocrocket. 为了防止某些网站的恶性转载,特在每篇文章前加入此信息,还望读者体谅. ...

  5. chromium安装flash

    sudo apt-get install pepperflashplugin-nonfree sudo update-pepperflashplugin-nonfree --install Flash ...

  6. [转]python yield

    任何使用yield的函数都称之为生成器,如: def count(n): while n > 0: yield n   #生成值:n n -= 1 另外一种说法:生成器就是一个返回迭代器的函数, ...

  7. [jQuery] Cannot read property ‘msie’ of undefined错误的解决方法

    最近把一个项目的jQuery升级到最新版,发现有些页面报错Cannot read property ‘msie’ of undefined.上jQuery网站上搜了一下,原因是$.browser这个a ...

  8. [jQuery编程挑战]008 生成逗号分隔数字

    <!DOCTYPE html> <html lang="zh"> <head> <meta charset="utf-8&quo ...

  9. [CSS]border边框

    border: 1px solid #ccc;    /*1像素 实线 灰色*/可分割成:border-width:1px;border-style: solid; border-color: #00 ...

  10. AppDomain与进程、线程、Assembly之间关系

    AppDomain是CLR的运行单元,它可以加载Assembly.创建对象以及执行程序 AppDomain是CLR实现代码隔离的基本机制.   每一个AppDomain可以单独运行.停止:每个AppD ...