【HDOJ】2430 Beans
这题目用线段树超时了,其实也差不多应该超时。10^6大数据量。看了一下网上的解法是单调队列。大概了解了一下,是个挺有意思的数据结构。
首先,需要求满足0<=(S[r]-S[l])%p<=k时,(S[r]-S[l])的最大值。
由于S[r]>=S[l],因此即求S[r]%p-k <= S[l]%p <= S[r]%p的最优解。
单调队列可解,按S[i]%p和i排列,每次固定r,求最优的l值,l在队头。
/* 2430 */
#include <iostream>
#include <sstream>
#include <string>
#include <map>
#include <queue>
#include <set>
#include <stack>
#include <vector>
#include <deque>
#include <algorithm>
#include <cstdio>
#include <cmath>
#include <ctime>
#include <cstring>
#include <climits>
#include <cctype>
#include <cassert>
#include <functional>
#include <iterator>
#include <iomanip>
using namespace std;
//#pragma comment(linker,"/STACK:102400000,1024000") #define sti set<int>
#define stpii set<pair<int, int> >
#define mpii map<int,int>
#define vi vector<int>
#define pii pair<int,int>
#define vpii vector<pair<int,int> >
#define rep(i, a, n) for (int i=a;i<n;++i)
#define per(i, a, n) for (int i=n-1;i>=a;--i)
#define clr clear
#define pb push_back
#define mp make_pair
#define fir first
#define sec second
#define all(x) (x).begin(),(x).end()
#define SZ(x) ((int)(x).size())
#define lson l, mid, rt<<1
#define rson mid+1, r, rt<<1|1 typedef struct node_t {
int q, p; node_t() {}
node_t(int q, int p):
q(q), p(p) {} friend bool operator< (const node_t& a, const node_t& b) {
if (a.q == b.q)
return a.p < b.p;
return a.q < b.q;
} } node_t; const int maxn = 1e6+;
int a[maxn];
__int64 sum[maxn];
node_t nd[maxn];
int n, p, k;
int Q[maxn];
__int64 ans; void solve() {
int l = , r = ;
__int64 tmp;
ans = -; rep(i, , n+) {
while (l<=r && nd[i].p < nd[Q[r]].p)
--r;
Q[++r] = i;
while (l<=r && (nd[i].q - nd[Q[l]].q) > k)
++l;
if (l >= r)
continue;
tmp = sum[nd[i].p] - sum[nd[Q[l]].p];
ans = max(ans, tmp/p);
}
} int main() {
ios::sync_with_stdio(false);
#ifndef ONLINE_JUDGE
freopen("data.in", "r", stdin);
freopen("data.out", "w", stdout);
#endif int t; scanf("%d", &t);
rep(tt, , t+) {
scanf("%d %d %d", &n, &p, &k);
nd[].p = nd[].q = ;
sum[] = ;
rep(i, , n+) {
scanf("%d", &a[i]);
sum[i] = sum[i-] + a[i];
nd[i].p = i;
nd[i].q = sum[i] % p;
}
sort(nd, nd+n+);
solve();
printf("Case %d: %I64d\n", tt, ans);
} #ifndef ONLINE_JUDGE
printf("time = %d.\n", (int)clock());
#endif return ;
}
【HDOJ】2430 Beans的更多相关文章
- 【HDOJ】【3037】Saving Beans
排列组合 啊……这题是要求c(n-1,0)+c(n,1)+c(n+1,2)+......+c(n+m-1,m) 这个玩意……其实就等于c(n+m,m) 好吧然后就是模P……Lucas大法好= = 我S ...
- 【HDOJ】4729 An Easy Problem for Elfness
其实是求树上的路径间的数据第K大的题目.果断主席树 + LCA.初始流量是这条路径上的最小值.若a<=b,显然直接为s->t建立pipe可以使流量最优:否则,对[0, 10**4]二分得到 ...
- 【HDOJ】【3506】Monkey Party
DP/四边形不等式 裸题环形石子合并…… 拆环为链即可 //HDOJ 3506 #include<cmath> #include<vector> #include<cst ...
- 【HDOJ】【3516】Tree Construction
DP/四边形不等式 这题跟石子合并有点像…… dp[i][j]为将第 i 个点开始的 j 个点合并的最小代价. 易知有 dp[i][j]=min{dp[i][j] , dp[i][k-i+1]+dp[ ...
- 【HDOJ】【3480】Division
DP/四边形不等式 要求将一个可重集S分成M个子集,求子集的极差的平方和最小是多少…… 首先我们先将这N个数排序,容易想到每个自己都对应着这个有序数组中的一段……而不会是互相穿插着= =因为交换一下明 ...
- 【HDOJ】【2829】Lawrence
DP/四边形不等式 做过POJ 1739 邮局那道题后就很容易写出动规方程: dp[i][j]=min{dp[i-1][k]+w[k+1][j]}(表示前 j 个点分成 i 块的最小代价) $w(l, ...
- 【HDOJ】【3415】Max Sum of Max-K-sub-sequence
DP/单调队列优化 呃……环形链求最大k子段和. 首先拆环为链求前缀和…… 然后单调队列吧<_<,裸题没啥好说的…… WA:为毛手写队列就会挂,必须用STL的deque?(写挂自己弱……s ...
- 【HDOJ】【3530】Subsequence
DP/单调队列优化 题解:http://www.cnblogs.com/yymore/archive/2011/06/22/2087553.html 引用: 首先我们要明确几件事情 1.假设我们现在知 ...
- 【HDOJ】【3068】最长回文
Manacher算法 Manacher模板题…… //HDOJ 3068 #include<cstdio> #include<cstring> #include<cstd ...
随机推荐
- Linux中Oracle数据库备份还原
一.备份Oracle数据库 1.使用数据库管理员账户登录 sqlplus system/system@orcl as sysdba; 2.创建备份目录,并指定备份目录(bak_dir)的物理路径 cr ...
- IOS开发之NSObject协议类方法说明
oc中NSObject类是所有类的基类,所有类都要继承自它,那么它的方法就显得特别重要,因为所有类都会有这些基本的方法. 看看oc的源码中NSObject是这样定义的: @interface NSOb ...
- Android--LowMemoryKiller知识点补充
Android在内存管理上与linux有些小的区别.其中一个就是引入了Low memory killer . 1.引入原因: Android是一个多任务系统,也就是说可以同时运行多个程序,这个大家应该 ...
- Flexbox介绍
CSS3 弹性盒( Flexible Box 或 flexbox),是一种当页面需要适应不同的屏幕大小以及设备类型时确保元素拥有恰当的行为的布局方式.对于很多应用来讲,弹性盒改进了盒模型,既不使用浮动 ...
- Php 的替代语法
替代语法 为什么会有替代语法: php是嵌入在html文档中的脚本语言,Php可以动态生成html标签,但是php主要功能并不是生成html标签,主要用于动态的生成数据(数据库中的数据).如果 ...
- 给div设置一个关闭按钮.
造轮子好难. 用惯了框架提供的组件,某天自己要做个伪组件(或者在他人创建的页面效果上添加新功能)会发现很难. 所以,碰到了,就一定要做下记录.以供日后查阅. 如图,弹出DIV右上角的关闭按钮是我此次添 ...
- 函数strtok
char* strtok(char *str, const char*delim) char *strtok_r(char *str, const char *delim, char **savept ...
- [leetcode]352. Data Stream as Disjoint Intervals
数据流合并成区间,每次新来一个数,表示成一个区间,然后在已经保存的区间中进行二分查找,最后结果有3种,插入头部,尾部,中间,插入头部,不管插入哪里,都判断一下左边和右边是否能和当前的数字接起来,我这样 ...
- InstallShield Custom Dialog
InstallShield 2008 Screen Layout is designed as below. Use toolbox to edit screen layout. 1> Set ...
- [翻译][MVC 5 + EF 6] 11:实现继承
原文:Implementing Inheritance with the Entity Framework 6 in an ASP.NET MVC 5 Application 1.选择继承映射到数据库 ...