131. Palindrome Partitioning
题目:
Given a string s, partition s such that every substring of the partition is a palindrome.
Return all possible palindrome partitioning of s.
For example, given s = "aab"
,
Return
[
["aa","b"],
["a","a","b"]
]
链接: http://leetcode.com/problems/palindrome-partitioning/
题解:
一看到return all xxxx,就猜到可能要用回溯。这道题就是比较典型的递归+回溯。递归前要判断当前的子字符串是否palindrome,答案是false的话要continue。
Time Complexity - O(n*2n), Space Complexity - O(n*2n)
public class Solution {
public List<List<String>> partition(String s) {
List<List<String>> res = new ArrayList<>();
if(s == null || s.length() == 0)
return res;
ArrayList<String> list = new ArrayList<>();
partition(res, list, s, 0);
return res;
} private void partition(List<List<String>> res, ArrayList<String> list, String s, int pos) {
if(pos == s.length()) {
res.add(new ArrayList<String>(list));
return;
} for(int i = pos + 1; i <= s.length(); i++) {
String partition = s.substring(pos, i);
if(!isPalindrome(partition))
continue;
list.add(partition);
partition(res, list, s, i);
list.remove(list.size() - 1);
}
} private boolean isPalindrome(String s) {
int lo = 0, hi = s.length() - 1; while(lo < hi) {
if(s.charAt(lo) != s.charAt(hi))
return false;
lo++;
hi--;
} return true;
}
}
需要好好看看主方法来确定定量分析递归算法的时间复杂度。
二刷:
仔细想一想代码可以简化不少。主要分为三部分。1是题目给定的方法,2是辅助方法,用来递归和回溯,3是判断string是否是palindrome。注意考虑清楚需要多少变量,以及时间空间复杂度。
Time Complexity: O(n!)
Space Complexity: O(n ^ 2)
Java:
public class Solution {
public List<List<String>> partition(String s) {
List<List<String>> res = new ArrayList<>();
List<String> list = new ArrayList<>();
partition(res, list, s);
return res;
} private void partition(List<List<String>> res, List<String> list, String s) {
if (s == null || s.length() == 0) {
res.add(new ArrayList<String>(list));
return;
}
for (int i = 0; i < s.length(); i++) {
String subStr = s.substring(0, i + 1);
if (isPalindrome(subStr)) {
list.add(subStr);
partition(res, list, s.substring(i + 1));
list.remove(list.size() - 1);
}
}
} private boolean isPalindrome(String s) {
if (s == null || s.length() < 2) {
return true;
}
int lo = 0, hi = s.length() - 1;
while (lo <= hi) {
if (s.charAt(lo) != s.charAt(hi)) {
return false;
}
lo++;
hi--;
}
return true;
}
}
三刷:
依然是使用二刷的方法。
Java:
public class Solution {
public List<List<String>> partition(String s) {
List<List<String>> res = new ArrayList<>();
if (s == null || s.length() == 0) return res;
partition(res, new ArrayList<>(), s);
return res;
} private void partition(List<List<String>> res, List<String> list, String s) {
if (s.length() == 0) {
res.add(new ArrayList<String>(list));
return;
}
for (int i = 0; i <= s.length(); i++) {
String front = s.substring(0, i);
if (isPalindrome(front)) {
list.add(front);
partition(res, list, s.substring(i));
list.remove(list.size() - 1);
}
}
} private boolean isPalindrome(String s) {
if (s == null || s.length() == 0) return false;
int lo = 0, hi = s.length() - 1;
while (lo < hi) {
if (s.charAt(lo) != s.charAt(hi)) return false;
lo++;
hi--;
}
return true;
}
}
Reference:
http://stackoverflow.com/questions/24591616/whats-the-time-complexity-of-this-algorithm-for-palindrome-partitioning
http://blog.csdn.net/metasearch/article/details/4428865
https://en.wikipedia.org/wiki/Master_theorem
http://www.cnblogs.com/zhuli19901106/p/3570430.html
https://leetcode.com/discuss/18984/java-backtracking-solution
https://leetcode.com/discuss/9623/my-java-dp-only-solution-without-recursion-o-n-2
https://leetcode.com/discuss/41626/concise-java-solution
https://leetcode.com/discuss/4788/shouldnt-we-use-dp-in-addition-to-dfs
131. Palindrome Partitioning的更多相关文章
- leetcode 131. Palindrome Partitioning 、132. Palindrome Partitioning II
131. Palindrome Partitioning substr使用的是坐标值,不使用.begin()..end()这种迭代器 使用dfs,类似于subsets的题,每次判断要不要加入这个数 s ...
- Leetcode 22. Generate Parentheses Restore IP Addresses (*) 131. Palindrome Partitioning
backtracking and invariant during generating the parathese righjt > left (open bracket and cloas ...
- Leetcode 131. Palindrome Partitioning
Given a string s, partition s such that every substring of the partition is a palindrome. Return all ...
- 78. Subsets(M) & 90. Subsets II(M) & 131. Palindrome Partitioning
78. Subsets Given a set of distinct integers, nums, return all possible subsets. Note: The solution ...
- [leetcode]131. Palindrome Partitioning字符串分割成回文子串
Given a string s, partition s such that every substring of the partition is a palindrome. Return all ...
- 【LeetCode】131. Palindrome Partitioning
Palindrome Partitioning Given a string s, partition s such that every substring of the partition is ...
- 131. Palindrome Partitioning (Back-Track, DP)
Given a string s, partition s such that every substring of the partition is a palindrome. Return all ...
- 131. Palindrome Partitioning(回文子串划分 深度优先)
Given a string s, partition s such that every substring of the partition is a palindrome. Return all ...
- Java for LeetCode 131 Palindrome Partitioning
Given a string s, partition s such that every substring of the partition is a palindrome. Return all ...
随机推荐
- Android颜色大全
<?xml version="1.0" encoding="utf-8"?> <resources> <color name=&q ...
- php文件上传限制
PHP默认的上传限定是最大2M,想上传超过此设定的文件,需要调整PHP.apache等的一些参数.下面,我们简要介绍一下PHP文件上传涉及到的一些参数: file_uploads :是否允许通过HTT ...
- Oracle笔记(三)单行函数
-函数 函数像一个黑盒子一样(看不到里边的构造),有参数返回值,可以为我们完成一定的功能. -单行 这种函数会对结果中的每一行计算一次,每行返回一个结果,单行概念区别于分组函数. 单行函数主要分为以下 ...
- poj 3783 Balls 动态规划 100层楼投鸡蛋问题
作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4098409.html 题目链接:poj 3783 Balls 动态规划 100层楼投鸡蛋问题 ...
- 我爱工程化 之 gulp 使用(二)
上一篇 介绍了gulp的安装.环境等配置.基本使用,那么现在,我们快走进 速8,深入了解吧...... 一.各种安装.环境配置.插件安装(参考上一篇文章) 二.项目基本目录结构 三.编写 gulpf ...
- centos 安装php ide (eclipse + php 插件)
1.检查更新并安装eclipse yum check-update yum install eclipse*此时的 eclipse 已经安装好了,默认是在/usr/lib/下的,可以通过cd /u ...
- Class.forName、Class.class(属性)、getClass()的区别
1.出现的时期不同:Class.forName()在运行时加载:Class.class和getClass()是在编译器加载2.Class.class只是在编译时用来存放类的相关信息,并没有实例化对象: ...
- laravel homestead
laravel homestead真是个好东西啊,折腾了很长时间,终于ok啦. 安装成功之后,在-目录下有个homstead,进入执行vagrant up clzdeMBP:Homestead clz ...
- 干货:Web应用上线之前程序员应该了解的技术细节
[伯乐在线注]:<Web 应用上线前,程序员应考虑哪些技术细节呢?>这是 StackExchange 上面的一个经典问题贴. 最赞回复有 2200+ 顶,虽然大多数人可能都听过其中大部分内 ...
- __sync_fetch_and_add
最近在公司离职的前辈写的代码哪里看到了__sync_fetch_and_add这个东东.比较好奇.找些资料学习学习 http://www.lxway.com/4091061956.htm http:/ ...