CodeForces 221(div 2)
A
无trick水题。。。
- /*
- * Author: Plumrain
- * Created Time: 2013-12-24 22:26
- * File Name: B.cpp
- */
- #include <iostream>
- #include <cstdio>
- #include <cstring>
- #include <string>
- #include <cmath>
- #include <algorithm>
- #include <vector>
- #include <cstdlib>
- #include <sstream>
- #include <fstream>
- #include <list>
- #include <deque>
- #include <queue>
- #include <stack>
- #include <map>
- #include <set>
- #include <bitset>
- #include <cctype>
- #include <ctime>
- #include <utility>
- using namespace std;
- #define clr0(x) memset(x, 0, sizeof(x))
- #define clr1(x) memset(x, -1, sizeof(x))
- #define pb push_back
- #define sz(v) ((int)(v).size())
- #define all(t) t.begin(),t.end()
- #define INF 999999999999999999
- #define zero(x) (((x)>0?(x):-(x))<eps)
- #define out(x) cout<<#x<<":"<<(x)<<endl
- #define tst(a) cout<<a<<" "
- #define tst1(a) cout<<#a<<endl
- #define CINBEQUICKER std::ios::sync_with_stdio(false)
- const double eps = 1e-;
- const double PI = atan(1.0)*;
- const int inf = / ;
- typedef vector<int> vi;
- typedef vector<string> vs;
- typedef vector<double> vd;
- typedef pair<int, int> pii;
- typedef long long int64;
- inline int Mymod (int a, int b) {int x=a%b; if(x<) x+=b; return x;}
- int ru[], chu[];
- int main()
- {
- // freopen("a.in","r",stdin);
- // freopen("a.out","w",stdout);
- // std::ios::sync_with_stdio(false);
- int n, m;
- while (scanf ("%d%d", &n , &m) != EOF){
- int t1, t2, w;
- clr0 (chu); clr0 (ru);
- for (int i = ; i < m; ++ i){
- scanf ("%d%d%d", &t1, &t2, &w);
- chu[--t1] += w;
- ru[--t2] += w;
- }
- int ans = ;
- for (int i = ; i < n; ++ i)
- ans += abs(chu[i] - ru[i]);
- printf ("%d\n", ans / );
- }
- return ;
- }
B
YY题。。。结论直接看代码就好了。。。比赛的时候YY出了结论算样例算错了,然后就去想别的方法了。。。。。。
- /*
- * Author: Plumrain
- * Created Time: 2013-12-24 22:26
- * File Name: B.cpp
- */
- #include <iostream>
- #include <cstdio>
- #include <cstring>
- #include <string>
- #include <cmath>
- #include <algorithm>
- #include <vector>
- #include <cstdlib>
- #include <sstream>
- #include <fstream>
- #include <list>
- #include <deque>
- #include <queue>
- #include <stack>
- #include <map>
- #include <set>
- #include <bitset>
- #include <cctype>
- #include <ctime>
- #include <utility>
- using namespace std;
- #define clr0(x) memset(x, 0, sizeof(x))
- #define clr1(x) memset(x, -1, sizeof(x))
- #define pb push_back
- #define sz(v) ((int)(v).size())
- #define all(t) t.begin(),t.end()
- #define INF 999999999999999999
- #define zero(x) (((x)>0?(x):-(x))<eps)
- #define out(x) cout<<#x<<":"<<(x)<<endl
- #define tst(a) cout<<a<<" "
- #define tst1(a) cout<<#a<<endl
- #define CINBEQUICKER std::ios::sync_with_stdio(false)
- const double eps = 1e-;
- const double PI = atan(1.0)*;
- const int inf = / ;
- typedef vector<int> vi;
- typedef vector<string> vs;
- typedef vector<double> vd;
- typedef pair<int, int> pii;
- typedef long long int64;
- inline int Mymod (int a, int b) {int x=a%b; if(x<) x+=b; return x;}
- int ru[], chu[];
- int main()
- {
- // freopen("a.in","r",stdin);
- // freopen("a.out","w",stdout);
- // std::ios::sync_with_stdio(false);
- int n, m;
- while (scanf ("%d%d", &n , &m) != EOF){
- int t1, t2, w;
- clr0 (chu); clr0 (ru);
- for (int i = ; i < m; ++ i){
- scanf ("%d%d%d", &t1, &t2, &w);
- chu[--t1] += w;
- ru[--t2] += w;
- }
- int ans = ;
- for (int i = ; i < n; ++ i)
- ans += abs(chu[i] - ru[i]);
- printf ("%d\n", ans / );
- }
- return ;
- }
C
题意:给一个很大的数m,这个数的各个位上的数字中一定含有至少1个1,6,8,9。你可以重新组织所有数字的顺序,使得重新排列之后的数能被7整除。10^4 <= m <= 10^(10^6)。
注意,排列之后的数不能含有前导0。
解法:把1,6,8,9四个数字放在最后面,根据前面的数*10000除以7的余数,来决定1,6,8,9四个数字的排列顺序即可。至于有没有前导0,特殊处理一下即可。
tag:math, think
- /*
- * Author: Plumrain
- * Created Time: 2013-12-25 14:09
- * File Name: C.cpp
- */
- #include <iostream>
- #include <cstdio>
- #include <cstring>
- #include <string>
- #include <cmath>
- #include <algorithm>
- #include <vector>
- #include <cstdlib>
- #include <sstream>
- #include <fstream>
- #include <list>
- #include <deque>
- #include <queue>
- #include <stack>
- #include <map>
- #include <set>
- #include <bitset>
- #include <cctype>
- #include <ctime>
- #include <utility>
- using namespace std;
- #define clr0(x) memset(x, 0, sizeof(x))
- #define clr1(x) memset(x, -1, sizeof(x))
- #define pb push_back
- #define sz(v) ((int)(v).size())
- #define all(t) t.begin(),t.end()
- #define INF 999999999999999999
- #define zero(x) (((x)>0?(x):-(x))<eps)
- #define out(x) cout<<#x<<":"<<(x)<<endl
- #define tst(a) cout<<a<<" "
- #define tst1(a) cout<<#a<<endl
- #define CINBEQUICKER std::ios::sync_with_stdio(false)
- const double eps = 1e-;
- const double PI = atan(1.0)*;
- const int inf = / ;
- typedef vector<int> vi;
- typedef vector<string> vs;
- typedef vector<double> vd;
- typedef pair<int, int> pii;
- typedef long long int64;
- inline int Mymod (int a, int b) {int x=a%b; if(x<) x+=b; return x;}
- bool del[];
- string temp = "";
- map<int, string> mp;
- void gao(string s)
- {
- stringstream stm(s);
- int num; stm >> num;
- int yu = num % ;
- if (!mp.count(yu)) mp[yu] = s;
- }
- int main()
- {
- // freopen("a.in","r",stdin);
- // freopen("a.out","w",stdout);
- // std::ios::sync_with_stdio(false);
- mp.clear();
- string tt = "";
- gao(tt);
- while (next_permutation(tt.begin(), tt.end())) gao(tt);
- string s;
- while (cin >> s){
- clr0 (del);
- string ss; ss.clear();
- int n = sz(s), cnt = ;
- for (int i = ; i < n; ++ i){
- if (s[i] == ''){
- ++ cnt; continue;
- }
- bool ok = ;
- for (int j = ; j < ; ++ j) if (s[i] == temp[j] && !del[j]){
- del[j] = ; ok = ;
- }
- if (!ok) ss.pb (s[i]);
- }
- int len = sz(ss);
- if (!len){
- ss = mp[];
- for (int i = ; i < cnt; ++ i) ss.pb ('');
- cout << ss << endl;
- continue;
- }
- for (int i = ; i < cnt; ++ i) ss.pb ('');
- len = sz(ss);
- int flag = ;
- for (int i = ; i < len; ++ i)
- flag = (flag* + ss[i] - '') % ;
- flag = flag * % ;
- ss += mp[( - flag) % ];
- cout << ss << endl;
- }
- return ;
- }
D
题意:有一个0,1矩阵(最大5000*5000),你可以无限次数地交换任意两行的位置。求交换之后,单个只含有1的矩形的面积最大,并返回这个面积值。
解法:枚举矩形的左下角是从哪一列开始,统计每一行从这一列开始连续的1有多少个记录在num数组里,然后从大到小遍历num数组,并更新面积值即可。
tag:dp, think, good
- /*
- * Author: Plumrain
- * Created Time: 2013-12-26 12:49
- * File Name: D.cpp
- */
- #include <iostream>
- #include <cstdio>
- #include <cstring>
- #include <string>
- #include <cmath>
- #include <algorithm>
- #include <vector>
- #include <cstdlib>
- #include <sstream>
- #include <fstream>
- #include <list>
- #include <deque>
- #include <queue>
- #include <stack>
- #include <map>
- #include <set>
- #include <bitset>
- #include <cctype>
- #include <ctime>
- #include <utility>
- using namespace std;
- #define clr0(x) memset(x, 0, sizeof(x))
- #define clr1(x) memset(x, -1, sizeof(x))
- #define pb push_back
- #define sz(v) ((int)(v).size())
- #define all(t) t.begin(),t.end()
- #define INF 999999999999999999
- #define zero(x) (((x)>0?(x):-(x))<eps)
- #define out(x) cout<<#x<<":"<<(x)<<endl
- #define tst(a) cout<<a<<" "
- #define tst1(a) cout<<#a<<endl
- #define CINBEQUICKER std::ios::sync_with_stdio(false)
- const double eps = 1e-;
- const double PI = atan(1.0)*;
- const int inf = / ;
- typedef vector<int> vi;
- typedef vector<string> vs;
- typedef vector<double> vd;
- typedef pair<int, int> pii;
- typedef long long int64;
- inline int Mymod (int a, int b) {int x=a%b; if(x<) x+=b; return x;}
- int n, m;
- int p[][], num[];
- char v[][];
- int main()
- {
- // freopen("a.in","r",stdin);
- //freopen("a.out","w",stdout);
- // std::ios::sync_with_stdio(false);
- while (scanf ("%d%d", &n, &m) != EOF){
- string s;
- for (int i = ; i < n; ++ i)
- scanf ("%s", v[i]);
- for (int i = ; i < n; ++ i){
- int tmp = m;
- for (int j = m-; j >= ; -- j){
- if (v[i][j] == '')
- tmp = j, p[i][j] = j;
- else
- p[i][j] = tmp;
- }
- }
- int ans = ;
- for (int i = ; i < m; ++ i){
- clr0 (num);
- for (int j = ; j < n; ++ j) num[p[j][i] - i] ++;
- int pos = ;
- while (pos && num[pos] == ) -- pos;
- int cnt = ;
- while (pos){
- if (num[pos]) cnt += num[pos];
- ans = max(cnt*pos, ans);
- -- pos;
- }
- }
- printf ("%d\n", ans);
- }
- return ;
- }
CodeForces 221(div 2)的更多相关文章
- Codeforces #344 Div.2
Codeforces #344 Div.2 Interview 题目描述:求两个序列的子序列或操作的和的最大值 solution 签到题 时间复杂度:\(O(n^2)\) Print Check 题目 ...
- Codeforces #345 Div.1
Codeforces #345 Div.1 打CF有助于提高做题的正确率. Watchmen 题目描述:求欧拉距离等于曼哈顿距离的点对个数. solution 签到题,其实就是求有多少对点在同一行或同 ...
- Codeforces Beta Round #27 (Codeforces format, Div. 2)
Codeforces Beta Round #27 (Codeforces format, Div. 2) http://codeforces.com/contest/27 A #include< ...
- Codeforces#441 Div.2 四小题
Codeforces#441 Div.2 四小题 链接 A. Trip For Meal 小熊维尼喜欢吃蜂蜜.他每天要在朋友家享用N次蜂蜜 , 朋友A到B家的距离是 a ,A到C家的距离是b ,B到C ...
- codeforces #592(Div.2)
codeforces #592(Div.2) A Pens and Pencils Tomorrow is a difficult day for Polycarp: he has to attend ...
- codeforces #578(Div.2)
codeforces #578(Div.2) A. Hotelier Amugae has a hotel consisting of 1010 rooms. The rooms are number ...
- codeforces #577(Div.2)
codeforces #577(Div.2) A Important Exam A class of students wrote a multiple-choice test. There are ...
- codeforces #332 div 2 D. Spongebob and Squares
http://codeforces.com/contest/599/problem/D 题意:给出总的方格数x,问有多少种不同尺寸的矩形满足题意,输出方案数和长宽(3,5和5,3算两种) 思路:比赛的 ...
- Codeforces Round #221 (Div. 1) B. Maximum Submatrix 2 dp排序
B. Maximum Submatrix 2 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/problemset ...
随机推荐
- xpath 操作XML
1.xpath 操作XML,底下部分代码被注释了,但是是完整功能,去除注释是正常使用的(有写命名和其他冲突,所以注释了) 总体有:完整读取xml,对xml的增删改查,对xml的特定操作 using S ...
- C# 异步操作
在程序中,普通的方法是单线程的.但中途如果有大型的操作,比如读取大文件,大批量操作数据库,网络传输等,都会导致程序阻塞,表现在界面上就是程序卡或者死掉,界面元素不动了,不响应了.C#异步调用很好的解决 ...
- HDU 3359 Kind of a Blur(高斯消元)
题意: H * W (W,H <= 10) 的矩阵A的某个元素A[i][j],从它出发到其他点的曼哈顿距离小于等于D的所有值的和S[i][j]除上可达点的数目,构成了矩阵B.给定矩阵B,求矩阵A ...
- extjs中gridpanel动态显示/隐藏列
在extjs3中,大家知道用 myGrid.getColumnModel().setHidden(i,true);但到了4.0后,已经没有getColumnModel这个方法了,我们在Ext.pane ...
- 谨慎使用php的strtotime()函数
我们在日常业务中,针对业务量,经常会采用对数据库按时间做横向分表,分表后的查询往往会涉及到时间问题.例如,我们想查询某个用户距离当前时间1个月的订单情况,在这个时候,我们有些会用到strtotime( ...
- 完美PNG半透明窗体解决方案
当年Vista系统刚出来的时候,最吸引人的莫过于半透明磨砂的窗体界面了,迷倒了多少人.这个界面技术随即引发了编程界的一阵骚动,很多人都在问:如何实现这一界面效果?当然,在Vista下倒是很简单,系统本 ...
- python运维开发之路第一天
一.python安装及环境变量配置 1.windows7安装python 1)下载地址:https://www.python.org/downloads/windows/ 如下图: 注意:下载,用代理 ...
- lsmod
http://blog.csdn.net/yuan892173701/article/details/8960607 抽空写下
- Solr4.8.0源码分析(22)之SolrCloud的Recovery策略(三)
Solr4.8.0源码分析(22)之SolrCloud的Recovery策略(三) 本文是SolrCloud的Recovery策略系列的第三篇文章,前面两篇主要介绍了Recovery的总体流程,以及P ...
- 转:《IIC时序》
I2C(Inter-Integrated Circuit)总线是一种由PHILIPS公司开发的两线式串行总线,用于连接微控制器及其外围设备.I2C总线产生于在80年代,最初为音频和视频设备开发,如今主 ...