Description

Before the invention of book-printing, it was very hard to make a copy of a book. All the contents had to be re-written by hand by so called scribers. The scriber had been given a book and after several months he finished its copy. One of the most famous scribers lived in the 15th century and his name was Xaverius Endricus Remius Ontius Xendrianus (Xerox). Anyway, the work was very annoying and boring. And the only way to speed it up was to hire more scribers.

Once upon a time, there was a theater ensemble that wanted to play famous Antique Tragedies. The scripts of these plays were divided into many books and actors needed more copies of them, of course. So they hired many scribers to make copies of these books. Imagine you have m books (numbered 1, 2 ... m) that may have different number of pages (p1, p2 ... pm) and you want to make one copy of each of them. Your task is to divide these books among k scribes, k <= m. Each book can be assigned to a single scriber only, and every scriber must get a continuous sequence of books. That means, there exists an increasing succession of numbers 0 = b0 < b1 < b2, ... < b
k-1 <= bk = m such that i-th scriber gets a sequence of books with numbers between bi-1+1 and bi. The time needed to make a copy of all the books is determined by the scriber who was assigned the most work. Therefore, our goal is to minimize the maximum number of pages assigned to a single scriber. Your task is to find the optimal assignment.

Input

The input consists of N cases. The first line of the input contains only positive integer N. Then follow the cases. Each case consists of exactly two lines. At the first line, there are two integers m and k, 1 <= k <= m <= 500. At the second line, there are integers p1, p2, ... pm separated by spaces. All these values are positive and less than 10000000.

Output

For each case, print exactly one line. The line must contain the input succession p1, p2, ... pm divided into exactly k parts such that the maximum sum of a single part should be as small as possible. Use the slash character ('/') to separate the parts. There must be exactly one space character between any two successive numbers and between the number and the slash.

If there is more than one solution, print the one that minimizes the work assigned to the first scriber, then to the second scriber etc. But each scriber must be assigned at least one book.

Sample Input

2
9 3
100 200 300 400 500 600 700 800 900
5 4
100 100 100 100 100

Sample Output

100 200 300 400 500 / 600 700 / 800 900
100 / 100 / 100 / 100 100
 
题意:有一个序列的书分给n个人,区间最大的最小,有多重分法,就让和大的区间尽量靠后
思路;明显的区间DP
 
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std; int dp[505][505],sum[505],a[505]; int main()
{
int t,n,m,i,j,x,v,cas;
scanf("%d",&cas);
while(cas--)
{
scanf("%d%d",&n,&m);
memset(sum,0,sizeof(sum));
memset(dp,-1,sizeof(dp));
for(i = 1; i<=n; i++)
{
scanf("%d",&x);
sum[i] = sum[i-1]+x;
}
dp[0][0] = 0;
for(i = 1; i<=n; i++)
{
for(j = 1; j<=i && j<=m; j++)
{
if(j == 1)
dp[i][j] = sum[i];
else
{
for(v = j-1; v<=i-1; v++)//
{
int t = max(dp[v][j-1],sum[i]-sum[v]);
if(dp[i][j] == -1 || t<dp[i][j])
dp[i][j] = t;
}
}
}
}
j = m-1;
x = 0;
for(i = n; i>=1; i--)
{
x+=sum[i]-sum[i-1];
if(x>dp[n][m] || i<=j)
{
a[j--] = i+1;
x = sum[i]-sum[i-1];
}
}
int cnt = 1;
for(i = 1; i<=n; i++)
{
if(i>1)
printf(" ");
if(cnt<m && a[cnt]==i)
{
printf("/ ");
cnt++;
}
printf("%d",sum[i]-sum[i-1]);
}
printf("\n");
} return 0;
}
 

POJ1505:Copying Books(区间DP)的更多相关文章

  1. POJ1505 Copying Books(二分法)

    B - 二分 Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu   Description   Be ...

  2. POJ1505&amp;&amp;UVa714 Copying Books(DP)

    Copying Books Time Limit: 3000MS Memory Limit: 10000K Total Submissions: 7109 Accepted: 2221 Descrip ...

  3. lightoj 1283 - Shelving Books(记忆化搜索+区间dp)

    题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1283 题解:这题很显然一看就像是区间dp,但是单纯的区间dp好像解决不了问题可 ...

  4. poj 1505 Copying Books

    http://poj.org/problem?id=1505 Copying Books Time Limit: 3000MS   Memory Limit: 10000K Total Submiss ...

  5. Copying Books

    Copying Books 给出一个长度为m的序列\(\{a_i\}\),将其划分成k个区间,求区间和的最大值的最小值对应的方案,多种方案,则按从左到右的区间长度尽可能小(也就是从左到右区间长度构成的 ...

  6. UVa 714 Copying Books(二分)

    题目链接: 传送门 Copying Books Time Limit: 3000MS     Memory Limit: 32768 KB Description Before the inventi ...

  7. 【BZOJ-4380】Myjnie 区间DP

    4380: [POI2015]Myjnie Time Limit: 40 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 162  Solved: ...

  8. 【POJ-1390】Blocks 区间DP

    Blocks Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5252   Accepted: 2165 Descriptio ...

  9. 区间DP LightOJ 1422 Halloween Costumes

    http://lightoj.com/volume_showproblem.php?problem=1422 做的第一道区间DP的题目,试水. 参考解题报告: http://www.cnblogs.c ...

随机推荐

  1. 织梦DeDeCms列表分页和内容页分页错位解决办法

    文章页分页代码在这里/include/arc.archives.class.php列表页分页/include/arc.listview.class.php 很多入门的站长会碰到这样的问题,织梦的通病, ...

  2. java 跳转地址栏地址改变

    在strtus1 中,很多都是直接的action 配置后进行跳转的 这样地址栏是不会改变的 如果需要进行浏览器跳转 ActionForward actionForward = new ActionFo ...

  3. iOS开发之info.pist文件和.pch文件

    iOS开发之info.pist文件和.pch文件 如果你是iOS开发初学者,不用过多的关注项目中各个文件的作用.因为iOS开发的学习路线起点不在这里,这些文件只会给你学习带来困扰. 打开一个项目,我们 ...

  4. iOS中的设计模式

    一. MVC MVC全名是Model View Controller,是模型(model)-视图(view)-控制器(controller)的缩写,一种软件设计典范,用一种业务逻辑.数据.界面显示分离 ...

  5. Web服务图片压缩,nginx+lua生成缩略图

    背景 目前而言,用移动端访问Web站点的用户越来越多,图片对流量的消耗是比较大的,之前一个用户用我们网站的app浏览的时候,2个小时耗去了2个G的流量,这是个很严重的问题,需要对图片进行压缩,减少对用 ...

  6. 跟我学android-常用控件之EditText

    EditText 是TextView的直接子类,它与TextView的区别在于,EditText可以接受用户输入. 下面通过一个实例来说明EditText的用法 实例:sina 微博的登录界面(注意, ...

  7. Mysql 应该选择什么引擎

    对于如何选择存储引擎,可以简答的归纳为一句话:“除非需要用到某些INNODB 不具备的特性,并且没有其他办法可以替代,否则都应该选择INNODB 引擎”.例如:如果要用到全文索引,建议优先考虑INNO ...

  8. LXPanel自定义添加应用程序到快速启动栏

    LXPanel是Linux下LXDE项目的一个桌面面板软件.我一开始接触的时候,对于自己自定义的程序到快速启动栏绕了很多弯路,这里记录下,防止以后自己忘了.还有一点就是很多时候,panel下的应用程序 ...

  9. protobuf的反射机制

    反射机制 java在运行状态时,能够知道任意类的所有属性和方法,都能够调用任意对象的任意方法和属性.这种动态获取的信息以及动态调用对象的方法的功能称为java语言的反射机制. C++本身没有反射机制. ...

  10. bc命令详解与实例

    bc: bc 是一种高精度的可交互执行的计算机语言.它在一些浮点数的运算中应用广泛. 一般情况下我们直接输入 bc ,便可进入其工作环境.当然,它还有其他的参数 -h 显示帮助信息并退出 -i 强制进 ...