Alex decided to try his luck in TV shows. He once went to the quiz named "What's That Word?!". After perfectly answering the questions "How is a pseudonym commonly referred to in the Internet?" ("Um... a nick?"), "After which famous inventor we name the unit of the magnetic field strength?" ("Um... Nikola Tesla?") and "Which rock band performs "How You Remind Me"?" ("Um... Nickelback?"), he decided to apply to a little bit more difficult TV show: "What's in This Multiset?!".

The rules of this TV show are as follows: there are n

multisets numbered from 1 to n. Each of them is initially empty. Then, q

events happen; each of them is in one of the four possible types:

  • 1 x v — set the x

-th multiset to a singleton {v}

  • 2 x y z — set the x

-th multiset to a union of the y-th and the z-th multiset. For example: {1,3}∪{1,4,4}={1,1,3,4,4}

  • 3 x y z — set the x

-th multiset to a product of the y-th and the z-th multiset. The product A×B of two multisets A, B is defined as {gcd(a,b)∣a∈A,b∈B}, where gcd(p,q) is the greatest common divisor of p and q. For example: {2,2,3}×{1,4,6}={1,2,2,1,2,2,1,1,3}

  • 4 x v — the participant is asked how many times number v

occurs in the x-th multiset. As the quiz turned out to be too hard in the past, participants should now give the answers modulo 2

  • only.

Note, that x

, y and z described above are not necessarily different. In events of types 2 and 3

, the sum or the product is computed first, and then the assignment is performed.

Alex is confused by the complicated rules of the show. Can you help him answer the requests of the 4

-th type?

Input

The first line contains two integers n

and q (1≤n≤105, 1≤q≤106

) — the number of multisets and the number of events.

Each of the following q

lines describes next event in the format given in statement. It's guaranteed that 1≤x,y,z≤n and 1≤v≤7000

always holds.

It's guaranteed that there will be at least one event of the 4

-th type.

Output

Print a string which consists of digits 0

and 1 only, and has length equal to the number of events of the 4-th type. The i-th digit of the string should be equal to the answer for the i-th query of the 4

-th type.

Example

Input
4 13
1 1 1
1 2 4
1 3 6
4 4 4
1 4 4
2 2 1 2
2 3 3 4
4 4 4
3 2 2 3
4 2 1
4 2 2
4 2 3
4 2 4
Output
010101

Note

Here is how the multisets look in the example test after each of the events; i

is the number of queries processed so far:

题意:

n个可重集,有Q次操作
   1 u v 表示将第u个可重集的元素置为1个v
   2 u a b 表示将第u个可重集置为第a个可重集和第b个可重集的并集
   3 u a b 表示将第u个可重集置为第a个可重集的每个元素和第b个可重集的每个元素的gcd的并集
   4 u v 表示求在第u个可重集中元素v的出现次数是奇数还是偶数
   n<=1e5 Q<=1e6 1<=v<=7000

思路:由于是只要求奇数还是偶数,我们整个过程只需要保存0和1即可,我们用莫比乌斯来求是否存在一个gcd,即保存当前集合是因子的奇偶性。那么对于2和3,我们可以直接操作(分别是^ &)了。

假设我们知道了因子的数量的奇偶性,假设保存在s[]里面。  vis[gcd]=mu(d/gcd)*s[d];所以对于每个gcd,我们预处理出mu(d/gcd)!=0的位置d,保存到b[]里面。

由于只求奇偶,1和-1的效果等效,结果和s[x]*b[y]的1的数量奇偶相同;

#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int maxn=;
const int maxm=;
bitset<maxm>s[maxn],b[maxm];
int mu[maxm],p[maxm],cnt;bool vis[maxm];
vector<int>G[maxm];
void init()
{
mu[]=;
rep(i,,maxm-){
if(!vis[i]) p[++cnt]=i,mu[i]=-;
rep(j,,cnt){
if(i*p[j]>=maxm) break;
vis[i*p[j]]=;
if(!(i%p[j])) {mu[i*p[j]]=; break;}
mu[i*p[j]]=-mu[i];
}
}
rep(i,,maxm-)
for(int j=i,k=;j<=maxm-;j+=i,k++){
G[j].push_back(i);
if(mu[k]!=) b[i][j]=;
}
}
int main()
{
int N,M,opt,x,y,z;
init();
scanf("%d%d",&N,&M);
while(M--){
scanf("%d",&opt);
if(opt==){
scanf("%d%d",&x,&y);
s[x].reset();
rep(i,,G[y].size()-)
s[x][G[y][i]]=s[x][G[y][i]]^;
}
else if(opt==){
scanf("%d%d%d",&x,&y,&z);
s[x]=s[y]^s[z];
}
else if(opt==){
scanf("%d%d%d",&x,&y,&z);
s[x]=s[y]&s[z];
}
else {
scanf("%d%d",&x,&y);
if((s[x]&b[y]).count()&) putchar('');
else putchar('');
}
}
return ;
}

CodeForces - 1097F:Alex and a TV Show (bitset & 莫比乌斯容斥)的更多相关文章

  1. Codeforces 1097F Alex and a TV Show (莫比乌斯反演)

    题意:有n个可重集合,有四种操作: 1:把一个集合设置为单个元素v. 2:两个集合求并集. 3:两个集合中的元素两两求gcd,然后这些gcd形成一个集合. 4:问某个可重复集合的元素v的个数取模2之后 ...

  2. Codeforces 1097F. Alex and a TV Show

    传送门 由于只要考虑 $\mod 2$ 意义下的答案,所以我们只要维护一堆的 $01$ 容易想到用 $bitset$ 瞎搞...,发现当复杂度 $qv/32$ 是可以过的... 一开始容易想到对每个集 ...

  3. Codeforces Round #330 (Div. 2) B. Pasha and Phone 容斥定理

    B. Pasha and Phone Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/595/pr ...

  4. Codeforces Round #258 (Div. 2) E. Devu and Flowers 容斥

    E. Devu and Flowers 题目连接: http://codeforces.com/contest/451/problem/E Description Devu wants to deco ...

  5. Codeforces 1097 Alex and a TV Show

    传送门 除了操作 \(3\) 都可以 \(bitset\) 现在要维护 \[C_i=\sum_{gcd(j,k)=i}A_jB_k\] 类比 \(FWT\),只要求出 \(A'_i=\sum_{i|d ...

  6. Codeforces Round #428 (Div. 2) D. Winter is here 容斥

    D. Winter is here 题目连接: http://codeforces.com/contest/839/problem/D Description Winter is here at th ...

  7. codeforces 342D Xenia and Dominoes(状压dp+容斥)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud D. Xenia and Dominoes Xenia likes puzzles ...

  8. CodeForces - 803F: Coprime Subsequences(莫比乌斯&容斥)

    Let's call a non-empty sequence of positive integers a1, a2... ak coprime if the greatest common div ...

  9. Codeforces Round #330 (Div. 2)B. Pasha and Phone 容斥

    B. Pasha and Phone   Pasha has recently bought a new phone jPager and started adding his friends' ph ...

随机推荐

  1. 【转】Netty之解决TCP粘包拆包(自定义协议)

    1.什么是粘包/拆包 一般所谓的TCP粘包是在一次接收数据不能完全地体现一个完整的消息数据.TCP通讯为何存在粘包呢?主要原因是TCP是以流的方式来处理数据,再加上网络上MTU的往往小于在应用处理的消 ...

  2. Qt样式表都有哪些属性可以设置

    我们可以在Qt助手中输入Qt Style Sheets Reference然后选择List of Pseudo-States 项查看Qt控件支持的所有状态. 附几个参考学习的博客: https://b ...

  3. ubuntu下唤醒或休眠远程计算机

    ubuntu让我明白,没有什么完美的东西,要想完美必须付出代价.要么花时间折腾,要么花时间赚钱买系统. 人生也是一样,所以不要期待什么完美.哪有那么好的人,在合适的时间合适的地点让你遇见,还对你有感觉 ...

  4. Linux运维工程师必学必备的8项IT技能

    如果你在学习Linux,那么强烈推荐你选择RHEL和Centos作为学习的Linux发行版本,在公司及企业当中他们是使用最多的,毕竟学习除了本身是爱好,其次也是为了就业.Centos是RHEL的克隆版 ...

  5. bzoj2330

    题解: 差分约束系统 要我们求最小值 显然就是转化为最长路 然后spfa一下即可 代码: #include<bits/stdc++.h> using namespace std; ; lo ...

  6. ubuntu 命令行卸载并清理软件

    1.删除软件 方法一.如果你知道要删除软件的具体名称,可以使用 sudo apt-get remove --purge 软件名称 sudo apt-get autoremove --purge 软件名 ...

  7. form 表单模板

    <div class="modal-dialog modal-lg"> //大布局modal-lg <div class="modal-content& ...

  8. 谷歌开源的TensorFlow Object Detection API视频物体识别系统实现(二)[超详细教程] ubuntu16.04版本

    本节对应谷歌开源Tensorflow Object Detection API物体识别系统 Quick Start步骤(一): Quick Start: Jupyter notebook for of ...

  9. 《十天学会单片机和C语言编程》

    <十天学会单片机和C语言编程> 大家注意了这个文件只有最新版迅雷可以下载,下面的lesson几就是第几课.点击右键使用迅雷下载. ed2k://|file|[十天学会单片机和C语言编程]. ...

  10. Problem C: 默认参数:求圆面积

    Description 编写一个带默认值的函数,用于求圆面积.其原型为: double area(double r=1.0); 当调用函数时指定参数r,则求半径为r的圆的面积:否则求半径为1的圆面积. ...