<题目链接>

题目大意:

给你一个n*m的棋盘,其中有k个洞,现在有1*2大小的纸片,纸片不能覆盖洞,并且每个格子最多只能被覆盖一次。问你除了洞口之外这个棋盘是否能被纸片填满。

解题分析:

还有一种根据横、纵坐标之和奇偶性,将棋盘上所有的点分成二部图两部分,然后用匈牙利算法求解的方法。

#include <cstdio>
#include <cstring>
#define N 34
#define M N*N

], used[M], mat[M];
int match, m, n;

bool find(int k){
    ; i<=g[k][]; i++)        //遍历序号为k的点的所有能够和它匹配的点
    {
        int j = g[k][i];
        if(!used[j])
        {
            used[j] = ;
            if(!mat[j] || find(mat[j]))        //如果这个点没有归属点或者它的归属点能够和其它点进行匹配
            {
                mat[j] = k;         //那么更换这个点的归属点
                return true;
            }
        }
    }
    return false;
}

void Hungary()
{
    ; i<=m*n; i++)      //枚举每个点
    {
        ] != - && g[i][] != )      //如果这个点不是hole 并且 它有点可供它配对
        {
            memset(used, , sizeof(used));
            match += find(i);        //如果配对成功,+1
        }
    }
}

int main()
{
    int i, j;
    int k;
    int x, y;
    scanf("%d%d%d", &m, &n, &k);

    ; i<=k; i++)
    {
        scanf("%d%d", &y, &x);        //注意这个题目的输入有坑
        g[y+(x-)*n][] = -;
    }

    ; i<=m*n; i++)  //由于卡片长度为2,所以每个点只能和它周围相邻的点配对,所以先把所有点的所有能和它配对的点全部找出来
    {
        ] != -)
        {
            //left

            )%n >=  && g[i-][] != -)    //它左边有点且该点能够匹配
                g[i-][++g[i-][]] = i;           //那么就记录下这两个点的匹配关系
            //right

             && g[i+][] != -)
                g[i+][++g[i+][]] = i;
            //up

             && g[i-n][] != -)
                g[i-n][++g[i-n][]] = i;
            //down

            ) / n <= m && g[i+n][] != -)
                g[i+n][++g[i+n][]] = i;
        }
    }
    match = ;
    Hungary();        //匈牙利

    if(match == m*n-k)
        printf("YES\n");
    else
        printf("NO\n");

    ;
}

2018-08-15

POJ 2446 Chessboard【二分图最大匹配】的更多相关文章

  1. POJ 2446 Chessboard (二分图最大匹配)

    题目链接:http://poj.org/problem?id=2446 给你一个n*m的棋盘,其中有k个洞,现在有1*2大小的纸片,纸片不能覆盖洞,并且每个格子最多只能被覆盖一次.问你除了洞口之外这个 ...

  2. POJ 2446 Chessboard (二分图匹配)

    题意 在一个N*M的矩形里,用1*2的骨牌去覆盖该矩形,每个骨牌只能覆盖相邻的两个格子,问是否能把每个格子都盖住.PS:有K个孔不用覆盖. 思路 容易发现,棋盘上坐标和为奇数的点只会和坐标和为偶数的点 ...

  3. poj 2446 Chessboard (二分图利用奇偶性匹配)

    Chessboard Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 13176   Accepted: 4118 Descr ...

  4. POJ 2446 Chessboard(二分图最大匹配)

    题意: M*N的棋盘,规定其中有K个格子不能放任何东西.(即不能被覆盖) 每一张牌的形状都是1*2,问这个棋盘能否被牌完全覆盖(K个格子除外) 思路: M.N很小,把每一个可以覆盖的格子都离散成一个个 ...

  5. POJ 1469 COURSES 二分图最大匹配 二分图

    http://poj.org/problem?id=1469 这道题我绝壁写过但是以前没有mark过二分图最大匹配的代码mark一下. 匈牙利 O(mn) #include<cstdio> ...

  6. 【网络流#6】POJ 3041 Asteroids 二分图最大匹配 - 《挑战程序设计竞赛》例题

    学习网络流中ing...作为初学者练习是不可少的~~~构图方法因为书上很详细了,所以就简单说一说 把光束作为图的顶点,小行星当做连接顶点的边,建图,由于 最小顶点覆盖 等于 二分图最大匹配 ,因此求二 ...

  7. poj - 3041 Asteroids (二分图最大匹配+匈牙利算法)

    http://poj.org/problem?id=3041 在n*n的网格中有K颗小行星,小行星i的位置是(Ri,Ci),现在有一个强有力的武器能够用一发光速将一整行或一整列的小行星轰为灰烬,想要利 ...

  8. poj 2446 Chessboard (二分匹配)

    Chessboard Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 12800   Accepted: 4000 Descr ...

  9. Poj(1469),二分图最大匹配

    题目链接:http://poj.org/problem?id=1469 COURSES Time Limit: 1000MS   Memory Limit: 10000K Total Submissi ...

随机推荐

  1. D - 文理分科 HYSBZ - 3894(最小割)

    题目链接:https://cn.vjudge.net/contest/281959#problem/D 题目大意:中文题目 具体思路: 首先说一下最小割:在最小代价的前提下,删除一些边之后,能够使得整 ...

  2. bootstrap-table前端修改数据

    使用bootstrap-table显示数据,后台传回数据以后,可能需要对其做调整,如需要前端为数据添加单位 调整数据代码 $("#"+tableId).bootstrapTable ...

  3. js中获取时间new date()的用法和获取时间戳

    获取时间: 1 var myDate = new Date();//获取系统当前时间 获取特定格式的时间: 1 myDate.getYear(); //获取当前年份(2位) 2 myDate.getF ...

  4. 从前端和后端两个角度分析jsonp跨域访问(完整实例)

    一.什么是跨域访问 举个栗子:在A网站中,我们希望使用Ajax来获得B网站中的特定内容.如果A网站与B网站不在同一个域中,那么就出现了跨域访问问题.你可以理解为两个域名之间不能跨过域名来发送请求或者请 ...

  5. Docker镜像命令

    ①docker images [Options] 用途:列出本地主机上的镜像 Options说明: -a:列出本地所有的镜像(含中间映像层) -q:只显示镜像ID --digests:显示镜像的摘要信 ...

  6. mac 报错Root chmod operation not permitted on file

    系统:mac os 10.14.1 重启电脑 mac用户在升级系统之后,电脑启用了SIP(System Integrity Protection),增加了rootless机制,导致即使在root权限下 ...

  7. c# 取本地ip地址

    public static System.Net.IPAddress[] GetIpAddress() { string hostName = System.Net.Dns.GetHostName() ...

  8. 关于素数:求不超过n的素数,素数的判定(Miller Rabin 测试)

    关于素数的基本介绍请参考百度百科here和维基百科here的介绍 首先介绍几条关于素数的基本定理: 定理1:如果n不是素数,则n至少有一个( 1, sqrt(n) ]范围内的的因子 定理2:如果n不是 ...

  9. 使用命令行登陆数据库配置文件修改 解决ora12528

    下面是问题解决: ORA-12528: TNS:listener: all appropriate instances are blocking new connections 1:修改listene ...

  10. servlet请求中的信息

    在servlet中HttpServeltRequest中有一个方法getRequestURL() 假如我们平常输入的地址是:localhost/Demo1/TestServlet?hello=worl ...