//核心代码如下
//Queen--放置皇后 #include "queue.h" queue::queue()
{
const int maxn = *;
this->QN = ;
this->board = new bool[maxn];
for (int i = ; i < maxn; i++) {
this->board[i] = false;
}
this->judgeRecursion = true;
this->count = ;
} queue::queue(int N)
{
const int maxn = ;
if (N > || N < )
this->QN = ; //如果不合法就正规化棋盘
else
this->QN = N;
this->board = new bool[maxn];
for (int i = ; i < maxn; ++i) //初始化棋盘,未放置棋子的棋盘设置为false
this->board[i] = false;
this->judgeRecursion = true;
this->count = ;
} bool queue::available (const int Crow, const int Ccol) const //当前行,当前列
{
for (int hor = ; hor < Crow; ++hor) {
//纵向查找
if (board[hor * QN + Ccol]) //已经放置皇后的棋盘处为true
return false; //则返回false--放置不合法
}
int obli = Crow, oblj = Ccol;
while (obli > && oblj > ) {
if (board[(--obli) * QN + (--oblj)])
return false; //左斜上查找
}
obli = Crow, oblj = Ccol;
while (obli > && oblj < QN - ) {
if (board[(--obli) * QN + (++oblj)])
return false; //右斜上查找
}
return true; //都没有,则该位置可以放置皇后
} //打印棋盘
void queue::show (bool *Q)
{
const int maxn = ;
for (int i = ; i < maxn; i++)
Q[i] = this->board[i];
} //重新初始化棋盘
void queue::reset ()
{
const int maxn = ;
for (int i = ; i < maxn; i++)
this->board[i] = false;
this->judgeRecursion = true;
this->count = ;
} void queue::reset (int N)
{
const int maxn = ;
if (N < || N > ) this->QN = ;
else
this->QN = N; for (int i = ; i < maxn; i++)
this->board[i] = false;
this->judgeRecursion = true;
this->count = ;
} queue::~queue ()
{
delete []board;
board = nullptr;
} /**
* @brief queue::answer --- 放置皇后
* @param solu --- 求解的方法数
* @param Crow --- 当前的行数
* @param Q --- 棋盘,用来打印
*/
void queue::answer (int solu, int cur, bool *Q)
{
if (!judgeRecursion) //递归结束,中断
return;
if (cur == QN) { //当前行到最后一行,则一种方案结束
count++;
if (count == solu) { //递归到第solu方案时停止
this->show (Q);
judgeRecursion = false; //停止递归
return;
}
return;
}
else
{
for (int col = ; col < QN; col++)
{
if (available (cur, col)) //检查当前行,列
{
board[cur * QN + col] = true; //合法则放置皇后
answer (solu, cur + , Q); //递归下一行
//如果回溯法中使用了辅助的全局变量,则一定要及时把它们恢复原状.
//特别的,若函数有多个出口,则需在每个出口处恢复被修改的值
board[cur * QN + col] = false;
}
}
}
}

源代码下载地址:链接:https://pan.baidu.com/s/12BTDR8pRMvxpKYNFb988EQ 密码:yk0o

八皇后问题动态演示_Qt5实现的更多相关文章

  1. C#中八皇后问题的递归解法——N皇后

    百度测试部2015年10月份的面试题之——八皇后. 八皇后问题的介绍在此.以下是用递归思想实现八皇后-N皇后. 代码如下: using System;using System.Collections. ...

  2. java递归求八皇后问题解法

    八皇后问题 八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例.该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处 ...

  3. 八皇后问题——列出所有的解,可推至N皇后

    <数据结构>--邓俊辉版本 读书笔记 今天学习了回溯法,有两道习题,一道N皇后,一道迷宫寻径.今天,先解决N皇后问题.由于笔者 擅长java,所以用java重现了八皇后问题. 注意是jav ...

  4. 题目---汉诺塔及AI代码及八皇后

    2019春第十一周作业 这个作业属于那个课程 C语言程序设计II 这个作业要求在哪里 https://edu.cnblogs.com/campus/zswxy/software-engineering ...

  5. 八皇后算法的另一种实现(c#版本)

    八皇后: 八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例.该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于 ...

  6. 数据结构0103汉诺塔&八皇后

    主要是从汉诺塔及八皇后问题体会递归算法. 汉诺塔: #include <stdio.h> void move(int n, char x,char y, char z){ if(1==n) ...

  7. [Unity][Heap sort]用Unity动态演示堆排序的过程(How Heap Sort Works)

    [Unity][Heap sort]用Unity动态演示堆排序的过程 How Heap Sort Works 最近做了一个用Unity3D动态演示堆排序过程的程序. I've made this ap ...

  8. Python学习二(生成器和八皇后算法)

    看书看到迭代器和生成器了,一般的使用是没什么问题的,不过很多时候并不能用的很习惯 书中例举了经典的八皇后问题,作为一个程序员怎么能够放过做题的机会呢,于是乎先自己来一遍,于是有了下面这个ugly的代码 ...

  9. Python解决八皇后问题

    最近看Python看得都不用tab键了,哈哈.今天看了一个经典问题--八皇后问题,说实话,以前学C.C++的时候有这个问题,但是当时不爱学,没搞会,后来算法课上又碰到,只是学会了思想,应该是学回溯法的 ...

随机推荐

  1. let申明与const申明

    ES6新增了let命令,用来声明变时量. 它的用法类似于var 但是所声明的变量,只在let命令所在的代码块内有效. // for(let i = 0; i<10 ;i++ ){ console ...

  2. [转帖]知乎专栏:正确使用 Docker 搭建 GitLab 只要半分钟

    正确使用 Docker 搭建 GitLab 只要半分钟 https://zhuanlan.zhihu.com/p/49499229 很多程序员在内网搭建 gitlab 都搭建的坑坑洼洼,不支持 htt ...

  3. hive存储、数据模型、内部表

    创建内部表 加一列元素 删除表

  4. Bootstrap输入框组

    前面的话 有时,我们需要将文本输入框(input group)和文件或者小icon组合在一起进行显示, 我们称之为addon.也就是通过在文本输入框 <input> 前面.后面或是两边加上 ...

  5. BZOJ4385[POI2015]Wilcze doły——单调队列+双指针

    题目描述 给定一个长度为n的序列,你有一次机会选中一段连续的长度不超过d的区间,将里面所有数字全部修改为0.请找到最长的一段连续区间,使得该区间内所有数字之和不超过p. 输入 第一行包含三个整数n,p ...

  6. BZOJ5252 八省联考2018林克卡特树(动态规划+wqs二分)

    假设已经linkcut完了树,答案显然是树的直径.那么考虑这条直径在原树中是怎样的.容易想到其是由原树中恰好k+1条点不相交的链(包括单个点)拼接而成的.因为这样的链显然可以通过linkcut拼接起来 ...

  7. poj2115-C Looooops -线性同余方程

    线性同余方程的模板题.和青蛙的约会一样. #include <cstdio> #include <cstring> #define LL long long using nam ...

  8. 快乐的Lambda表达式(二)

    转载:http://www.cnblogs.com/jesse2013/p/happylambda-part2.html 快乐的Lambda表达式 上一篇 背后的故事之 - 快乐的Lambda表达式( ...

  9. The Shortest Statement CodeForces - 1051F(待测试)

    #include <iostream> #include <cstdio> #include <sstream> #include <cstring> ...

  10. MT【35】用复数得到的两组恒等式

    特别的,当$r\rightarrow1^{-}$时有以下两个恒等式: 第二个恒等式有关的自主招生试题参考博文MT[31]傅里叶级数为背景的三角求和 评:利用两种展开形式得到一些恒等式是复数里经常出现的 ...