数据分析与挖掘 - R语言:KNN算法
一个简单的例子!
环境:CentOS6.5
Hadoop集群、Hive、R、RHive,具体安装及调试方法见博客内文档。
KNN算法步骤:
需对所有样本点(已知分类+未知分类)进行归一化处理。然后,对未知分类的数据集中的每个样本点依次执行以下操作:
1、计算已知类别数据集中的点与当前点(未知分类)的距离。
2、按照距离递增排序
3、选取与当前距离最小的k个点
4、确定前k个点所在类别的出现频率
5、返回前k个点出现频率最高的类别作为当前点的预测类别
编写R脚本:
#!/usr/bin/Rscript
#1、对iris进行归一化处理
iris_s <- data.frame(scale(iris[, 1:4]))
iris_s <- cbind(iris_s, iris[, 5])
names(iris_s)[5] = "Species" #2、对iris数据集随机选择其中的100条记录作为已知分类的样本集
sample.list <- sample(1:150, size = 100)
iris.known <- iris_s[sample.list, ] #3、剩余50条记录作为未知分类的样本集(测试集)
iris.unknown <- iris_s[-sample.list, ] #4、对测试集中的每一个样本,计算其与已知样本的距离,因为已经归一化,此处直接使用欧氏距离
length.known <- nrow(iris.known)
length.unknown <- nrow(iris.unknown) #5、计算
for (i in 1:length.unknown) {
dis_to_known <- data.frame(dis = rep(0, length.known))
for (j in 1:length.known) {
dis_to_known[j, 1] <- dist(rbind(iris.unknown[i, 1:4], iris.known[j,1:4]), method = "euclidean")
dis_to_known[j, 2] <- iris.known[j, 5]
names(dis_to_known)[2] = "Species"
} dis_to_known <- dis_to_known[order(dis_to_known$dis), ] k <- 5
type_freq <- as.data.frame(table(dis_to_known[1:k, ]$Species))
type_freq <- type_freq[order(-type_freq$Freq), ]
iris.unknown[i, 6] <- type_freq[1, 1]
} names(iris.unknown)[6] = "Species.pre" #7、输出分类结果
iris.unknown[, 5:6]
输出结果:略,结果集中,Species为样本实际分类,Species.pre为Knn算法的分类,正确率达90%以上。
KNN是有监督的学习算法,其特点有:
1、精度高,对异常值不敏感
2、只能处理数值型属性
3、计算复杂度高(如已知分类的样本数为n,那么对每个未知分类点要计算n个距离)
KNN算法存在的问题:
1、k值的确定是个难题。
2、如果距离最近的k个已知分类样本中,频数最高的类型有多个(频数相同),如何选择对未知样本的分类?目前看是随机的。
3、如果有n个未知类型样本,m个已知类型样本,则需要计算n*m个距离,计算量较大,且需存储全部数据集合,空间复杂度也较大。
4、能否把预测的样本分类加入到已知类别集合中,对剩余的未知类型样本进行分类?
5、归一化放在所有处理的最前面,这样需要知道全部的样本集合(已知分类+未知分类)来构建分类器,而实际上未知分类的样本并不一定能事先获得,这样如何进行归一化处理?
数据分析与挖掘 - R语言:KNN算法的更多相关文章
- 零基础数据分析与挖掘R语言实战课程(R语言)
随着大数据在各行业的落地生根和蓬勃发展,能从数据中挖金子的数据分析人员越来越宝贝,于是很多的程序员都想转行到数据分析, 挖掘技术哪家强?当然是R语言了,R语言的火热程度,从TIOBE上编程语言排名情况 ...
- 数据分析与挖掘 - R语言:贝叶斯分类算法(案例一)
一个简单的例子!环境:CentOS6.5Hadoop集群.Hive.R.RHive,具体安装及调试方法见博客内文档. 名词解释: 先验概率:由以往的数据分析得到的概率, 叫做先验概率. 后验概率:而在 ...
- 数据分析与挖掘 - R语言:贝叶斯分类算法(案例三)
案例三比较简单,不需要自己写公式算法,使用了R自带的naiveBayes函数. 代码如下: > library(e1071)> classifier<-naiveBayes(iris ...
- 数据分析与挖掘 - R语言:K-means聚类算法
一个简单的例子!环境:CentOS6.5Hadoop集群.Hive.R.RHive,具体安装及调试方法见博客内文档. 1.分析题目--有一个用户点击数据样本(husercollect)--按用户访问的 ...
- 数据分析与挖掘 - R语言:贝叶斯分类算法(案例二)
接着案例一,我们再使用另一种方法实例一个案例 直接上代码: #!/usr/bin/Rscript library(plyr) library(reshape2) #1.根据训练集创建朴素贝叶斯分类器 ...
- 数据分析与挖掘 - R语言:多元线性回归
一个简单的例子!环境:CentOS6.5Hadoop集群.Hive.R.RHive,具体安装及调试方法见博客内文档. 线性回归主要用来做预测模型. 1.准备数据集: X Y 0.10 42.0 0.1 ...
- R语言分类算法之随机森林
R语言分类算法之随机森林 1.原理分析: 随机森林是通过自助法(boot-strap)重采样技术,从原始训练样本集N中有放回地重复随机抽取k个样本生成新的训练集样本集合,然后根据自助样本集生成k个决策 ...
- R语言 神经网络算法
人工神经网络(ANN),简称神经网络,是一种模仿生物神经网络的结构和功能的数学模型或计算模型.神经网络由大量的人工神经元联结进行计算.大多数情况下人工神经网络能在外界信息的基础上改变内部结构,是一种自 ...
- R语言 推荐算法 recommenderlab包
recommend li_volleyball 2016年3月20日 library(recommenderlab) library(ggplot2) # data(MovieLense) dim(M ...
随机推荐
- Ubuntu-18.04设置开机启动脚本
参考:https://www.cnblogs.com/defifind/p/9285456.html http://www.cnblogs.com/airdot/p/9688530.html s ...
- db lock
1.锁的基本概念和功能 所谓锁(Lock),实际上是加在数据库.表空间.表.行或者数据页上的一种标记,用户在对各种数据库对象进行读取或者写入操作时首先要看该对象上的锁是否允许其进行相应操作.从允许用户 ...
- MySQL之多表查询一 介绍 二 多表连接查询 三 符合条件连接查询 四 子查询 五 综合练习
MySQL之多表查询 阅读目录 一 介绍 二 多表连接查询 三 符合条件连接查询 四 子查询 五 综合练习 一 介绍 本节主题 多表连接查询 复合条件连接查询 子查询 首先说一下,我们写项目一般都会建 ...
- Django url配置 正则表达式详解 分组命名匹配 命名URL 别名 和URL反向解析 命名空间模式
Django基础二之URL路由系统 本节目录 一 URL配置 二 正则表达式详解 三 分组命名匹配 四 命名URL(别名)和URL反向解析 五 命名空间模式 一 URL配置 Django 1.11版本 ...
- [No0000163]卷福、神秘博士和一群老戏骨表演群口相声:To be or not to be该咋念,简直高潮迭起
'To be or not to be, that is the question',<哈姆雷特>中这句经典台词到底应该怎么念? 这是古今无数哈姆雷特演员最爱琢磨的问题,一千个人就 ...
- Vue2 dist 目录下各个文件的区别
vue2 经过 2.2 版本升级后, 文件变成了 8 个: vue.common.js vue.esm.js vue.js vue.min.js vue.runtime.common.js vue.r ...
- iOS中UITableView的一些问题思考
UITableview的数据源为什么是代理,而不是引用? 我的理解,一般情况下控制器会引用tableView, 数据源和代理方法都是tableView的一个若引用,出了“tableView.datas ...
- iOS 问答时间
runloop 的 model作用是什么? 答案: model 主要是用来指定事件在运行循环中的优先级,分为: NSDefaultRunLoopMode(kCFRunLoopDefaultMode): ...
- ASM X86&&X64 Registers 对寄存器ESP和EBP的一些理解
ESP EIP EBP : frame pointer(base address of stack) Calling Convention: 调用约定 为什么fun调用之后 esp -ebp = 20 ...
- tomcat安装apr优化
APR是apache的一个linux操作系统级优化库,可以在tomcat中使用操作系统级native调用大大提高并发处理效率 先安装前置依赖: yum install -y apr-devel ope ...