CSU 1849 Comparing answers(数学矩阵)
Comparing answers
离散数学真的要好好学啊:一个邻接矩阵(这个矩阵一定是n×n的方阵,n是图的节点个数),表示的是从i到j有几条通路的时候,矩阵的1次方就代表从从i到j长度为1的路径通路的个数,矩阵的2次方就代表从从i到j长度为2的路径通路的个数...矩阵的n次方就代表从从i到j长度为n的路径通路的个数
【题目链接】Comparing answers
【题目类型】数学矩阵
&题解:
这题就是求矩阵的平方是否等于所给的矩阵,但是要用n2的算法来解,n3算法肯定是不行的.
我们可以另找一个向量C 如果A* A=B 那么(A* A)* C=B* C 又有矩阵乘法满足结合律,所以A* (A* C)=B* C 又因为C只有n行1列,所以可以用n^2算法求出上面的式子,如果他们不相等,那就是NO,反之.
【时间复杂度】\(O(n^2)\)
&代码:
#include <cstdio>
#include <iostream>
#include <set>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <map>
#include <queue>
#include <vector>
using namespace std;
#define INF 0x3f3f3f3f
using ll=long long;
const int maxn= 1e3 +9;
typedef vector<ll> vec;
typedef vector<vec> mat;
ll n,M=1e9;
vec mul(mat &A,vec &B)
{
vec C(A.size());
for(int i=0;i<A.size();i++)
for(int j=0;j<B.size();j++){
C[i]=(C[i]+A[i][j]*B[j]);
}
return C;
}
int main()
{
ios::sync_with_stdio(false),cin.tie(0),cout.tie(0);
freopen("E:1.txt","r",stdin);
while(cin>>n){
if(n==0)break;
mat A(n,vec(n)),B(n,vec(n));
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
cin>>A[i][j];
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
cin>>B[i][j];
vec H(n),TE(n);
for(int i=0;i<n;i++){
H[i]=i+1;
TE[i]=i+1;
}
H=mul(A,H);
H=mul(A,H);
TE=mul(B,TE);
int f=1;
for(int i=0;i<n;i++){
if(TE[i]!=H[i])
f=0;
}
if(f)
cout<<"YES"<<endl;
else
cout<<"NO"<<endl;
}
return 0;
}
CSU 1849 Comparing answers(数学矩阵)的更多相关文章
- 3D数学 ---- 矩阵和线性变换[转载]
http://blog.sina.com.cn/s/blog_536e0eaa0100jn7c.html 一般来说,方阵能描述任意线性变换.线性变换保留了直线和平行线,但原点没有移动.线性变换保留直线 ...
- 机器学习中的数学-矩阵奇异值分解(SVD)及其应用
转自:http://www.cnblogs.com/LeftNotEasy/archive/2011/01/19/svd-and-applications.html 版权声明: 本文由LeftNotE ...
- CSU 1805 Three Capitals(矩阵树定理+Best定理)
http://acm.csu.edu.cn/csuoj/problemset/problem?pid=1805 题意: A和B之间有a条边,A和G之间有b条边,B和G之间有c条边.现在从A点出发走遍所 ...
- CSU 1290 DP解决数学期望问题
题目链接:http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1290 题目大意: 给定k个数,每次可以生成0-N-1中的任何一个数,k个数中出现不同的整 ...
- 2016"百度之星" - 初赛(Astar Round2A)All X(数学 矩阵)
All X Accepts: 1281 Submissions: 7580 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536 ...
- 3D数学 矩阵常用知识点整理
1.矩阵了解 1)矩阵的维度和记法 (先数多少行,再数多少列) 2)矩阵的转置 行变成列,第一行变成第一列...矩阵的转置的转置就是原矩阵 即 3)矩阵和标量的乘法 ...
- luogu3263/bzoj4002 有意义的字符串 (数学+矩阵快速幂)
首先我们发现$\frac{b+\sqrt{d}}{2}$这个形式好像一元二次方程的求根公式啊(???反正我发现不了) 然后我们又想到虽然这个东西不好求但是$(\frac{b-\sqrt{d}}{2}) ...
- HDU 4565 So Easy! 数学 + 矩阵 + 整体思路化简
http://acm.hdu.edu.cn/showproblem.php?pid=4565 首先知道里面那个东西,是肯定有小数的,就是说小数部分是约不走的,(因为b限定了不是一个完全平方数). 因为 ...
- HDU 4565 So Easy!(数学+矩阵快速幂)(2013 ACM-ICPC长沙赛区全国邀请赛)
Problem Description A sequence Sn is defined as:Where a, b, n, m are positive integers.┌x┐is the cei ...
随机推荐
- 编译安装spark 1.5.x(Building Spark)
原文连接:http://spark.apache.org/docs/1.5.0/building-spark.html · Building with build/mvn · Building a R ...
- 单周期CPU设计的理论基础
写在前面:本博客内容为本人老师原创,严禁任何形式的转载!本博客只允许放在博客园(.cnblogs.com),如果您在其他网站看到这篇博文,请通过下面这个唯一的合法链接转到原文! 本博客全网唯一合法UR ...
- 【编译原理】c++实现自下而上语法分析及中间代码(四元式)生成
写在前面:本博客为本人原创,严禁任何形式的转载!本博客只允许放在博客园(.cnblogs.com),如果您在其他网站看到这篇博文,请通过下面这个唯一的合法链接转到原文! 本博客全网唯一合法URL:ht ...
- day2_webservice接口怎么测-SoapUI
可以用SoapUI工具测试 步骤: 1.新建soap project Ok后左侧出现接口内容 2.输入参数执行 3.根据需求文档的参数返回值做对比
- LeetCode 1012 Complement of Base 10 Integer 解题报告
题目要求 Every non-negative integer N has a binary representation. For example, 5 can be represented as ...
- 洛谷P2329 栅栏 [SCOI2005] 搜索
正解:搜索 解题报告: 先放下传送门! 首先说下爆搜趴,就直接枚每个需求是否被满足以及如果满足切哪个板子,随便加个最优性剪枝,似乎是有80pts 然后思考优化 首先显然尽量满足需求比较小的,显然如果能 ...
- c语言递归函数的调用
int fun(); int main() { int n,sum=0,i; scanf("%d",&n); for (i=1; i<=n; i++) { sum+= ...
- 【前端技术】web 开发常见问题--GET POST 区别
web 开发常见问题--GET POST 区别 首先,get和post是什么? --两种 HTTP 请求方法:GET 和 POST HTTP Request Methods GET.POST 专业 ...
- XtraBackup之踩过的坑
xtrabackup相信目前使用已经非常广泛了,备份innodb表的首选工具,但是其中还是有点小坑,虽然发生的概率不大,但是我还是踩坑了.关于xtrabackup的详细参考请查阅官方文档http:// ...
- Laravel展示产品-CRUD之show
上一篇讲了Laravel创建产品-CRUD之Create and Store,现在我们来做产品展示模块,用到是show,①首先我们先修改controller,文件是在/app/Http/Control ...