题目链接

比赛链接

\(Description\)

\(Solution\)

参考:https://www.cnblogs.com/SovietPower/p/9781573.html

暴力:\(f[i][j][k]\)表示前\(i\)个数,与起来为\(j\),异或和为\(k\)的方案数。复杂度\(O(n*4^{13})\)。

考虑位运算的性质,最后怎么得到某一位的1:&要求所有数这一位为1,^只需判这一位为1的数的奇偶性。

所以我们用13位三进制s表示13位01的状态(2表示全1,0/1表示奇偶性),再存一下选的数的个数。

这样DP就是\(O(n*3^{13})\)了。

但是直接\(f[i][s][0/1]\)不会写啊,求路过dalao教。。(拆状态好像也挺麻烦)

记异或和为\(x\),位与和为\(y\),因为是与,所以\(x\)再与\(y\)和\(y\)是有关系的,也就是当选了奇数个数时,\(x\&y=y\);否则\(x\&y=0\)。

那么暴力中的合法的\(j,k\)实际没有\(2^{13}*2^{13}\)那么多。

所有合法状态满足\(x\&y=y\)或是\(x\&y=0\),也就是\(y\)要么是\(x\)的子集,要么与\(x\)没有交集(别忘这种情况啊)。

因为有第二种情况所以只求异或和的所有子集不行。但再求一遍补集存状态也不对(不知道为什么)。

令\(xx=x\&(\sim y)\),我们发现\(xx\)还是确定的?而且因为\(x,y\)的关系,选奇数个时\(x\)就是\(xx|y\),否则\(x=xx\)。

我们枚举\(y\),再枚举\(\sim y\)的子集(要\(\&8191\))得到\(xx\)。(我也不知道怎么会想到用\(xx\)。。好神啊)

在DP的时候根据奇偶性把\(x\)转化出来就行了(得状态再\(\&(\sim y)\))。然后就可以同暴力直接转移。

状态数为\(O(3^{13})\)。

答案是\(f[n][status(0,0)][0]+\sum_s f[n][status(s,s)][1]\)。

复杂度也是\(O(n*3^{13})\)。

DP数组也要longlong(随机的话倒也爆不了int)。

id[][]按枚举顺序确定下标会快近一倍。

#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#define gc() getchar()
#define all 8191
#define cnt 1594323
typedef long long LL;
const int N=8192+3,M=1594323+3; int And[M],XX[M],id[N][N];
LL F[M][2],G[M][2]; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
int Init()
{
int n=0;
for(int y=0; y<=all; ++y)//y
{
int ss=(~y)&all;
for(int x=ss; ; x=(x-1)&ss)
{
id[y][x]=++n;
XX[n]=x, And[n]=y;
if(!x) break;
}
}
return n;
} int main()
{
// const int all=8191;
// const int cnt=1594323;
Init();
int n=read(); LL (*f)[2]=F,(*g)[2]=G;
f[id[all][0]][0]=1;
for(int i=1,ai; i<=n; ++i)
{
ai=read(), std::swap(f,g);
memcpy(f,g,sizeof F);//f[i][s]=f[i-1][s]
for(int j=1; j<=cnt; ++j)
for(int k=0; k<2; ++k)
{
if(!g[j][k]) continue;
int x=XX[j],y=And[j];
k && (x|=y);
x^=ai, y&=ai;
x&=(~y);
f[id[y][x]][k^1]+=g[j][k];
}
}
LL ans=f[id[0][0]][0];
for(int i=1; i<=cnt; ++i) if(!XX[i]) ans+=f[i][1];//x==y xx=0
printf("%lld\n",ans); return 0;
}

hihoCoder挑战赛19 A.Rikka with Sequence(状压DP)的更多相关文章

  1. Codeforces 895C - Square Subsets 状压DP

    题意: 给了n个数,要求有几个子集使子集中元素的和为一个数的平方. 题解: 因为每个数都可以分解为质数的乘积,所有的数都小于70,所以在小于70的数中一共只有19个质数.可以使用状压DP,每一位上0表 ...

  2. hihocoder #1608 : Jerry的奶酪(状压dp)

    题目链接:http://hihocoder.com/problemset/problem/1608 题解:就是一道简单的状压dp由于dfs过程中只需要几个点之间的转移所以只要预处理一下几个点就行. # ...

  3. HihoCoder - 1794:拼三角形 (状压DP)

    描述 给定 n 根木棍,第 i 根长度为 ai 现在你想用他们拼成尽量多的面积大于 0 的三角形,要求每根木棍只能被用一次,且不能折断 请你求出最多能拼出几个 输入 第一行一个正整数 n 第二行 n ...

  4. ZOJ3802 Easy 2048 Again (状压DP)

    ZOJ Monthly, August 2014 E题 ZOJ月赛 2014年8月 E题 http://acm.zju.edu.cn/onlinejudge/showProblem.do?proble ...

  5. 状压dp大总结1 [洛谷]

    前言 状态压缩是一种\(dp\)里的暴力,但是非常优秀,状态的转移,方程的转移和定义都是状压\(dp\)的难点,本人在次总结状压dp的几个题型和例题,便于自己以后理解分析状态和定义方式 状态压缩动态规 ...

  6. 【BZOJ-1097】旅游景点atr SPFA + 状压DP

    1097: [POI2007]旅游景点atr Time Limit: 30 Sec  Memory Limit: 357 MBSubmit: 1531  Solved: 352[Submit][Sta ...

  7. CF453B Little Pony and Harmony Chest (状压DP)

    CF453B CF454D Codeforces Round #259 (Div. 2) D Codeforces Round #259 (Div. 1) B D. Little Pony and H ...

  8. HDU5731 Solid Dominoes Tilings 状压dp+状压容斥

    题意:给定n,m的矩阵,就是求稳定的骨牌完美覆盖,也就是相邻的两行或者两列都至少有一个骨牌 分析:第一步: 如果是单单求骨牌完美覆盖,请先去学基础的插头dp(其实也是基础的状压dp)骨牌覆盖 hiho ...

  9. Noip2016愤怒的小鸟(状压DP)

    题目描述 题意大概就是坐标系上第一象限上有N只猪,每次可以构造一条经过原点且开口向下的抛物线,抛物线可能会经过某一或某些猪,求使所有猪被至少经过一次的抛物线最少数量. 原题中还有一个特殊指令M,对于正 ...

随机推荐

  1. Docker三要素

    一.镜像(Image) Docker镜像(Image)就是一个只读的模板,镜像可以用来创建Docker容器,一个镜像可以创建很多容器. Docker 面向对象 镜像 类(class) 容器 实例对象 ...

  2. JavaScript对象复制(一)(转载)

    在JavaScript很多人复制一个对象的时候都是直接用"=",因为大家都觉得脚本语言是没有指针.引用.地址之类的,所以直接用"="就可以把一个对象复制给另外一 ...

  3. css 背景图片自适应元素大小

    一.一种比较土的方法,<img>置于底层. 方法如下: CSS代码: HTML: <img src="背景图片路径" /> <span>字在背景 ...

  4. numpy 中 shape_base提供的tile方法

    tile函数 来自于numpy.lib.shape_base 功能:重复某个数组. 比如说tile(A, n), 功能是将数组A重复n次,构成一个新的数组(行数只有1个) 比如说tile(A, n, ...

  5. Python中的exec、eval使用实例

    Python中的exec.eval使用实例 这篇文章主要介绍了Python中的exec.eval使用实例,本文以简洁的方式总结了Python中的exec.eval作用,并给出实例,需要的朋友可以参考下 ...

  6. ARMV8 datasheet学习笔记3:AArch64应用级体系结构之Memory order

    1.前言 2.基本概念 Observer 可以发起对memory read/write访问的都是observer; Observability 是一种观察能力,通过read可以感知到别的observe ...

  7. Linux mmc framework2:基本组件之queue

    1.前言 本文主要介绍card下queue组件的主要流程,在介绍的过程中,将详细说明和queue相关的流程,涉及到其它组件的详细流程再在相关文章中说明. 2.主要数据结构和API 2.1 struct ...

  8. linux内核capable源代码分析【转】

    转自:https://blog.csdn.net/sanwenyublog/article/details/50856849 linux内核里对于进程的权限管理有一个很重要的函数capable,以前看 ...

  9. 深入解析内存原理:SRAM的基本原理

    1. SRAM芯片的引脚定义早期的SRAM 芯片采用了20 线双列直插(DIP:Dual Inline Package)封装技术,它们之所以具有这么多的针脚,是因为它们必须:• 每个地址信号都需要一根 ...

  10. Maven编译时,出现找不到符号

    解决办法: 如果使用的是聚合工程 1.执行project--clean(eclipse)或者build project(intellij),将项目清理一下. 2.执行聚合工程中的  Maven--cl ...