BZOJ.4530.[BJOI2014]大融合(LCT)
很明显题目是要求去掉一条边后两边子树sz[]的乘积。
LCT维护的是链的信息,那么子树呢?
我们用s_i[x]来记录轻边连向x的子树的和(记作虚儿子),那么sum[x]更新时就是sum[lson]+sum[rson]+val[x]+s_i[x]。
现在需要s_i[x],考虑什么时候会影响它。
Splay()影响的只是节点在辅助树Splay中的相对位置,并不会对树中的信息产生影响。
Access()需要更改右儿子,即加上一个虚儿子加上一个实儿子,对应更新即可,如果只需要维护sum之类不需要Update()(一加一减)。
Make_root()无影响。虽然使整棵树形态都发生了变化,但这一操作并不直接用来获取信息。
Split()不需要考虑(仅是调用函数)。
Find_root()无影响。
Link()后y多了一个虚儿子,那么sum[y],s_i[y]加上x。这一步之前要将y旋到根(Access(y),Splay(y)),否则y以上的部分不会更新。
Cut()无影响。虽然少了个儿子,但这一操作不会用来直接获取信息,下次获取信息时会更新,不会影响正确性。
这样答案就是x,y两边s_i+1的乘积(分离出路径后实的就是x->y了,再加上自己),或是(y为根时)sz[x]*(sz[y]-sz[x])
//3264kb 1380ms
#include <cstdio>
#include <cctype>
#include <algorithm>
#define gc() getchar()
const int N=1e5+5;
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
namespace LCT
{
#define lson son[x][0]
#define rson son[x][1]
int fa[N],son[N][2],sz[N],sz_i[N],sk[N];
bool tag[N];
inline void Update(int x){
sz[x]=sz[lson]+sz[rson]+1+sz_i[x];
}
inline bool n_root(int x){
return son[fa[x]][0]==x||son[fa[x]][1]==x;
}
inline void Rev(int x){
std::swap(lson,rson), tag[x]^=1;
}
inline void PushDown(int x){
if(tag[x]) Rev(lson),Rev(rson),tag[x]=0;
}
void Rotate(int x)
{
int a=fa[x],b=fa[a],l=son[a][1]==x,r=l^1;
if(n_root(a)) son[b][son[b][1]==a]=x;
if(son[x][r]) fa[son[x][r]]=a;
fa[a]=x, fa[x]=b, son[a][l]=son[x][r], son[x][r]=a;
Update(a);
}
void Splay(int x)
{
int t=1,a=x,b; sk[1]=x;//
while(n_root(a)) sk[++t]=a=fa[a];
while(t) PushDown(sk[t--]);
while(n_root(x))
{
a=fa[x], b=fa[a];
if(n_root(a)) Rotate(son[a][1]==x^son[b][1]==a?x:a);
Rotate(x);
}
Update(x);
}
void Access(int x){
for(int pre=0; x; x=fa[pre=x])
{
Splay(x);
sz_i[x]+=sz[rson], sz_i[x]-=sz[rson=pre];
// Update(x);
}
}
void Make_root(int x){
Access(x), Splay(x), Rev(x);
}
void Split(int x,int y){
Make_root(x), Access(y), Splay(y);
}
void Link(int x,int y){
Split(x,y), sz_i[fa[x]=y]+=sz[x], Update(y);//更新!
}
long long Query(int x,int y){
Split(x,y); return 1ll*(sz_i[x]+1)*(sz_i[y]+1);//1ll*sz[x]*(sz[y]-sz[x]);
}
}
int main()
{
int n=read(),q=read(),x,y; char opt[3];
for(int i=1; i<=n; ++i) LCT::sz[i]=1;
while(q--)
{
scanf("%s",opt),x=read(),y=read();
if(opt[0]=='A') LCT::Link(x,y);
else printf("%lld\n",LCT::Query(x,y));
}
return 0;
}
BZOJ.4530.[BJOI2014]大融合(LCT)的更多相关文章
- bzoj 4530 [Bjoi2014]大融合——LCT维护子树信息
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4530 LCT维护子树 siz .设 sm[ ] 表示轻儿子的 siz 和+1(1是自己的si ...
- BZOJ:4530: [Bjoi2014]大融合
4530: [Bjoi2014]大融合 拿这题作为lct子树查询的练手.本来以为这会是一个大知识点,结果好像只是一个小技巧? 多维护一个虚边连接着的子树大小即可. #include<cstdio ...
- bzoj 4530: [Bjoi2014]大融合【LCT】
新姿势,一般来讲LCT只能维护splay重边里的数据,而这里要求维护整颗子树的size 多维护一个sq表示当前点轻儿子的size和,si表示包括轻重边的整颗子树的大小 然后需要改sq的地方是link和 ...
- 【刷题】BZOJ 4530 [Bjoi2014]大融合
Description 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够 联通的树上路过它 ...
- [BZOJ4530][Bjoi2014]大融合 LCT + 启发式合并
[BZOJ4530][Bjoi2014]大融合 试题描述 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是 ...
- [BJOI2014]大融合(LCT)
题面 luogu bzoj是权限题.. 题解 \(LCT\)维护子树信息 因为\(LCT\)中有一些虚子树,\(splay\)维护不了. 所以要新开一个数组来记录 然后注意\(link\)时 是先\( ...
- 【BZOJ】4530: [Bjoi2014]大融合
[题意]给定n个点的树,从无到有加边,过程中动态询问当前图某条边两端连通点数的乘积,n<=10^5. [算法]线段树合并+并查集 (||LCT(LCT维护子树信息 LCT维护子树信息(+启发式合 ...
- 【bzoj4530】[Bjoi2014]大融合 LCT维护子树信息
题目描述 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够联通的树上路过它的简单路径的数量 ...
- Luogu4219 BJOI2014 大融合 LCT
传送门 题意:写一个数据结构,支持图上连边(保证图是森林)和询问一条边两端的连通块大小的乘积.$\text{点数.询问数} \leq 10^5$ 图上连边,$LCT$跑不掉 支持子树$size$有点麻 ...
随机推荐
- DFP算法(转载)
转载链接:http://blog.csdn.net/itplus/article/details/21896981 注意:式(2.25)中,蓝色变量之所以是实数可以根据它们的矩阵系数相乘为1*1得到.
- 关注网页的更新状况,了解最新的handsup 消息.
// 第一部分是网页截图和源码保存 // upon page load. var fs = require("fs"); var resourceWait = 300, maxRe ...
- 一步步实现windows版ijkplayer系列文章之五——使用automake生成makefile
一步步实现windows版ijkplayer系列文章之一--Windows10平台编译ffmpeg 4.0.2,生成ffplay 一步步实现windows版ijkplayer系列文章之二--Ijkpl ...
- js闭包之应用场景
闭包的解释 当函数可以记住并访问所在的词法作用域,即使函数是在当前词法作用域之外执行,这时就产生了闭包 在javascript中,只有函数内部的子函数才能读取局部变量,所以说,闭包可以简单理解成“定义 ...
- SeaJS入门教程系列之SeaJS介绍(一)
前言SeaJS是一个遵循CommonJS规范的JavaScript模块加载框架,可以实现JavaScript的模块化开发及加载机制.与jQuery等JavaScript框架不同,SeaJS不会扩展封装 ...
- 【ES】match_phrase与regexp
刚开始接触es,由于弄不清楚match_phrase和regexp导致很多查询结果与预想的不同.在这整理一下. regexp:针对的是单个词项 match_phrase:针对的是多个词项的相对位置 它 ...
- pyhon----模块导入
正常情况 报错(两个导入都报错)
- python 全栈开发,Day63(子查询,MySQl创建用户和授权,可视化工具Navicat的使用,pymysql模块的使用)
昨日内容回顾 外键的变种三种关系: 多对一: 左表的多 对右表一 成立 左边的一 对右表多 不成立 foreign key(从表的id) refreences 主表的(id) 多对多 建立第三张表(f ...
- bind函数详解(转)
var name = "The Window"; var object = { name: "My Object", getNameFunc: function ...
- spring配置redis注解缓存
前几天在spring整合Redis的时候使用了手动的方式,也就是可以手动的向redis添加缓存与清除缓存,参考:http://www.cnblogs.com/qlqwjy/p/8562703.html ...