rabbitmq使用方法(一)
Introduction
RabbitMQ is a message broker. The principal idea is pretty simple: it accepts and forwards messages.
RabbitMQ, and messaging in general, uses some jargon.
Producing means nothing more than sending. A program that sends messages is a producer. We'll draw it like that, with "P":
A queue is the name for a mailbox. It lives inside RabbitMQ. Although messages flow through RabbitMQ and your applications, they can be stored only inside a queue. A queue is not bound by any limits, it can store as many messages as you like ‒ it's essentially an infinite buffer. Many producers can send messages that go to one queue, many consumers can try to receive data from one queue. A queue will be drawn as like that, with its name above it:
Consuming has a similar meaning to receiving. A consumer is a program that mostly waits to receive messages. On our drawings it's shown with "C":
Note that the producer, consumer, and broker do not have to reside on the same machine; indeed in most applications they don't.
Hello World!
(using the pika 0.9.8 Python client)
Our "Hello world" won't be too complex ‒ let's send a message, receive it and print it on the screen. To do so we need two programs: one that sends a message and one that receives and prints it.
Our overall design will look like:
Producer sends messages to the "hello" queue. The consumer receives messages from that queue.
Sending
Our first program send.py will send a single message to the queue. The first thing we need to do is to establish a connection with RabbitMQ server.
#!/usr/bin/env python
import pika connection = pika.BlockingConnection(pika.ConnectionParameters(
'localhost'))
channel = connection.channel()We're connected now, to a broker on the local machine - hence the localhost. If we wanted to connect to a broker on a different machine we'd simply specify its name or IP address here.
Next, before sending we need to make sure the recipient queue exists. If we send a message to non-existing location, RabbitMQ will just trash the message. Let's create a queue to which the message will be delivered, let's name it hello:
channel.queue_declare(queue='hello')
At that point we're ready to send a message. Our first message will just contain a string Hello World! and we want to send it to our hello queue.
In RabbitMQ a message can never be sent directly to the queue, it always needs to go through an exchange. But let's not get dragged down by the details ‒ you can read more aboutexchanges in the third part of this tutorial. All we need to know now is how to use a default exchange identified by an empty string. This exchange is special ‒ it allows us to specify exactly to which queue the message should go. The queue name needs to be specified in the routing_key parameter:
channel.basic_publish(exchange='',
routing_key='hello',
body='Hello World!')
print " [x] Sent 'Hello World!'"Before exiting the program we need to make sure the network buffers were flushed and our message was actually delivered to RabbitMQ. We can do it by gently closing the connection.
connection.close()
Receiving
Our second program receive.py will receive messages from the queue and print them on the screen.
Again, first we need to connect to RabbitMQ server. The code responsible for connecting to Rabbit is the same as previously.
The next step, just like before, is to make sure that the queue exists. Creating a queue using queue_declare is idempotent ‒ we can run the command as many times as we like, and only one will be created.
channel.queue_declare(queue='hello')
Receiving messages from the queue is more complex. It works by subscribing a callback function to a queue. Whenever we receive a message, this callback function is called by the Pika library. In our case this function will print on the screen the contents of the message.
def callback(ch, method, properties, body):
print " [x] Received %r" % (body,)Next, we need to tell RabbitMQ that this particular callback function should receive messages from our hello queue:
channel.basic_consume(callback,
queue='hello',
no_ack=True)For that command to succeed we must be sure that a queue which we want to subscribe to exists. Fortunately we're confident about that ‒ we've created a queue above ‒ usingqueue_declare.
The no_ack parameter will be described later on.And finally, we enter a never-ending loop that waits for data and runs callbacks whenever necessary.
print ' [*] Waiting for messages. To exit press CTRL+C'
channel.start_consuming()Putting it all together
Full code for send.py:
#!/usr/bin/env python
import pika connection = pika.BlockingConnection(pika.ConnectionParameters(
host='localhost'))
channel = connection.channel() channel.queue_declare(queue='hello') channel.basic_publish(exchange='',
routing_key='hello',
body='Hello World!')
print " [x] Sent 'Hello World!'"
connection.close()Full receive.py code:
#!/usr/bin/env python
import pika connection = pika.BlockingConnection(pika.ConnectionParameters(
host='localhost'))
channel = connection.channel() channel.queue_declare(queue='hello') print ' [*] Waiting for messages. To exit press CTRL+C' def callback(ch, method, properties, body):
print " [x] Received %r" % (body,) channel.basic_consume(callback,
queue='hello',
no_ack=True) channel.start_consuming()
rabbitmq使用方法(一)的更多相关文章
- 最简单的 RabbitMQ 监控方法 - 每天5分钟玩转 OpenStack(158)
这是 OpenStack 实施经验分享系列的第 8 篇. 先来看张图:这是 Nova 的架构图,我们可以看到有两个组件处于架构的中心位置:数据库和Queue.数据库保存状态信息,而几乎所有的 nova ...
- Rabbitmq各方法的作用详解
exchange_declare('direct_logs', 'direct', false, false, false);// 这个是申明交换器,如果没有申明就给默认队列的这个交换器,而且发送的类 ...
- 一个非常简单用.NET操作RabbitMQ的方法
RabbitMQ作为一款主流的消息队列工具早已广受欢迎.相比于其它的MQ工具,RabbitMQ支持的语言更多.功能更完善. 本文提供一种市面上最/极简单的使用RabbitMQ的方式(支持.NET/.N ...
- 登录RabbitMQ的方法
一:(运行RabbitMQ之前需要先打开docker 容器)打开相应的路径,在windows Powershell 管理员下打开 输入:docker-compose -f .\docker-compo ...
- rabbitmq使用方法(二)
Work Queues In the first tutorial we wrote programs to send and receive messages from a named queue. ...
- RabbitMQ高可用集群配置
1.安装RabbitMQ 1)下载和安装erlang 下载erlang wget http://www.rabbitmq.com/releases/erlang/erlang-18.1-1.el6.x ...
- Python并发编程-RabbitMQ消息队列
RabbitMQ队列 RabbitMQ是一个在AMQP基础上完整的,可复用的企业消息系统.他遵循Mozilla Public License开源协议. MQ全称为Message Queue, 消息队列 ...
- RabbitMQ学习(二):Java使用RabbitMQ要点知识
转 https://blog.csdn.net/leixiaotao_java/article/details/78924863 1.maven依赖 <dependency> <g ...
- kubernetes安装rabbitmq集群
1.准备K8S环境 2.下载基础镜像,需要安装两种插件:autocluster.rabbitmq_management 方法一: 下载已有插件镜像 [root@localhost ~]#docker ...
随机推荐
- ubuntu 禁用 guest 账户
第一步: run the command(s) below: (编辑如下文件) sudo vi /usr/share/lightdm/lightdm.conf.d/50-ubuntu.c ...
- unicode-range特定字符使用font-face自定义字体
链接: https://www.zhangxinxu.com/wordpress/2016/11/css-unicode-range-character-font-face/
- 测试开发之前端——No5.HTML5中的表单事件
表单事件 由 HTML 表单内部的动作触发的事件. 适用于所有 HTML 5 元素,不过最常用于表单元素中: 属性 值 描述 onblur script 当元素失去焦点时运行脚本 onchange s ...
- linux java报错汇总
一:♦linux 下javac 编译报 需要class, interface 或enum错误 ♦解析时已到达文件结尾 原因:大括号补匹配 //注意看报警提示
- poj2828 伸展树模拟
用伸展树模拟插队比线段树快乐3倍.. 但是pojT了.别的oj可以过,直接贴代码. 每次更新时,找到第pos个人,splay到根,然后作为新root的左子树即可 #include<iostrea ...
- 遍历DOM树
遍历DOM在jQuery中是非常重要的技术. 遍历DOM之前,需要对DOM有清晰的认识,了解文档节点.元素节点.属性节点.文本节点等相关概念.不清楚可以温习下<JavaScript教程.DOM树 ...
- POJ 3421 X-factor Chains (因式分解+排列组合)
题意:一条整数链,要求相邻两数前一个整除后一个.给出链尾的数,求链的最大长度以及满足最大长度的不同链的数量. 类型:因式分解+排列组合 算法:因式分解的素因子个数即为链长,链中后一个数等于前一个数乘以 ...
- php输出json的内容
$json = '{"foo": 12345}'; $obj = json_decode($json); print $obj->{'foo'}; // 12345
- #14 [BZOJ2090/2089] [Poi2010]Monotonicity 2/Monotonicity
题解: 首先想到了标算..然后证明了一发是错的(事实证明很智障) 先说正确性比较显然的O(n^2)算法 令f[i][j]表示前i个物品,匹配到第j个括号,最大值是多少 g[i][j]表示前i个物品,匹 ...
- python全栈开发day49-jquery的位置信息、事件流、事件对象,事件委托,事件绑定和解绑
一.昨日内容回顾 1. jQuery的属性操作 1) html属性操作:attr 2) DOM属性操作:prop 3) 类样式操作:addClass.removeClass.toggleClas ...