BZOJ 3994: [SDOI2015]约数个数和3994: [SDOI2015]约数个数和 莫比乌斯反演
https://www.lydsy.com/JudgeOnline/problem.php?id=3994
https://blog.csdn.net/qq_36808030/article/details/77056706
莫比乌斯反演,我现在莫比乌斯反演都不会写不会推了。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
using namespace std;
#define LL long long
const int maxn=;
int mu[maxn]={},pri[maxn]={},tot=;
bool v[maxn]={};LL f[maxn]={};
void get_mu(int n){
mu[]=;
for(int i=;i<=n;++i){
if(!v[i]){pri[++tot]=i;mu[i]=-;}
for(int j=;j<=tot&&pri[j]*i<=n;++j){
int w=pri[j]*i;v[w]=;
if(i%pri[j]==){mu[w]=;break;}
mu[w]=mu[i]*(-);
}
}
for(int i=;i<=n;++i){
mu[i]+=mu[i-];
for(int j=,las;j<=i;j=las+){
las=i/(i/j);
f[i]+=(LL)(las-j+)*(LL)(i/j);
}
}
}
int main(){
get_mu(maxn-);
int T;scanf("%d\n",&T);
while(T-->){
int n,m; scanf("%d%d",&n,&m);
if(n>m)swap(n,m);
LL ans=;
for(int i=,las;i<=n;i=las+){
las=min(n/(n/i),m/(m/i));
ans+=(LL)(mu[las]-mu[i-])*f[n/i]*f[m/i];
}
printf("%lld\n",ans);
}
return ;
}
BZOJ 3994: [SDOI2015]约数个数和3994: [SDOI2015]约数个数和 莫比乌斯反演的更多相关文章
- bzoj 2005 & 洛谷 P1447 [ Noi 2010 ] 能量采集 —— 容斥 / 莫比乌斯反演
题目:bzoj 2005 https://www.lydsy.com/JudgeOnline/problem.php?id=2005 洛谷 P1447 https://www.luogu.org/ ...
- BZOJ 2440 中山市选2011 全然平方数 二分答案+容斥原理+莫比乌斯反演
题目大意:求第k个无平方因子数是多少(无视原题干.1也是全然平方数那岂不是一个数也送不出去了? 无平方因子数(square-free number),即质因数分解之后全部质因数的次数都为1的数 首先二 ...
- bzoj 4916: 神犇和蒟蒻 (杜教筛+莫比乌斯反演)
题目大意: 读入n. 第一行输出“1”(不带引号). 第二行输出$\sum_{i=1}^n i\phi(i)$. 题解: 所以说那个$\sum\mu$是在开玩笑么=.= 设$f(n)=n\phi(n) ...
- [SDOI2015][bzoj 3994][Luogu P3327] 约数个数和 (莫比乌斯反演)
题目描述 设d(x)d(x)d(x)为xxx的约数个数,给定NNN.MMM,求 ∑i=1N∑j=1Md(ij)\sum^{N}_{i=1}\sum^{M}_{j=1} d(ij)i=1∑Nj=1∑M ...
- bzoj千题计划203:bzoj3994: [SDOI2015]约数个数和
http://www.lydsy.com/JudgeOnline/problem.php?id=3994 设d(x)为x的约数个数,给定N.M,求 用到的一个结论: 证明: 枚举n的约数i,枚举m的约 ...
- BZOJ_3994_[SDOI2015]约数个数和_莫比乌斯反演
BZOJ_3994_[SDOI2015]约数个数和_莫比乌斯反演 Description 设d(x)为x的约数个数,给定N.M,求 Input 输入文件包含多组测试数据. 第一行,一个整数T,表 ...
- P3327 [SDOI2015]约数个数和 莫比乌斯反演
P3327 [SDOI2015]约数个数和 莫比乌斯反演 链接 luogu 思路 第一个式子我也不会,luogu有个证明,自己感悟吧. \[d(ij)=\sum\limits_{x|i}\sum\li ...
- 【BZOJ3994】[SDOI2015] 约数个数和(莫比乌斯反演)
点此看题面 大致题意: 设\(d(x)\)为\(x\)的约数个数,求\(\sum_{i=1}^N\sum_{j=1}^Md(i·j)\). 莫比乌斯反演 这是一道莫比乌斯反演题. 一个重要的性质 首先 ...
- 洛谷P3327 [SDOI2015]约数个数和 【莫比乌斯反演】
题目 设d(x)为x的约数个数,给定N.M,求\(\sum_{i = 1}^{N} \sum_{j = 1}^{M} d(ij)\) 输入格式 输入文件包含多组测试数据.第一行,一个整数T,表示测试数 ...
随机推荐
- 【vim】查找重复的连续的单词
当你很快地打字时,很有可能会连续输入同一个单词两次,就像 this this.这种错误可能骗过任何一个人,即使是你自己重新阅读一遍也不可避免.幸运的是,有一个简单的正则表达式可以用来预防这个错误.使用 ...
- ARMV8 datasheet学习笔记2:概述
1. 前言 本文主要概括的介绍ARMV8体系结构定义了哪些内容,概括的说: ARM体系结构定义了PE的行为,不会定义具体的实现 ARM体系结构也定义了debug体系结构和trace体系结构 ARM体系 ...
- .net active up mail 邮件发送
using System;using System.Collections.Generic;using System.Linq;using System.Text;using System.Threa ...
- 如何在windows上调试安卓机谷歌浏览器上的页面
- 下面的方法仅在windows和安卓机上测试过,,,, - 手机(安卓机)需要安装chrome与电脑(Windows)上的chrome配合,也就是只能调试谷歌浏览器上的页面 1.手机的准备工作 打开 ...
- windows环境用python修改环境变量的注意点(含代码)
1.部分环境变量字段需要保留原来的值,只是做添加,不可以替换 2.Path和PATH对于python来说是一样的,也就是说存在名为Path的环境变量时,添加PATH的环境变量,会覆盖原有的Path环境 ...
- saltstack自动化运维系列12配置管理安装redis-3.2.8
一.准备redis自动化配置的文件(即安装一遍redis,然后获取相关文件和配置在salt中执行上线) 1.源码安装redis3.2.8并注册为系统服务 安装依赖yum install -y tcl ...
- java工程添加类库
在属性中添加自定义类库 在工程中引入自定义类库
- TomCat安装配置教程
一.JDK的安装与配置 1.从官网下载jdk,注意是jdk不是jre.最好从官网下载,也可以直接度娘. 2.下载完毕后,安装jdk,直接按照安装向导的提示安装即可,安装时可以自己选择安装路径,我的安 ...
- 前端工程化-webpack(babel编译ES6)
最新版安装与普通安装 使用babel-loader编译ES6,需要遵循规范,安装babel-presets 规范列表 对应babel-loader,babel-preset安装最新版和普通版: pre ...
- LeetCode(8):字符串转整数(atoi)
Medium! 题目描述: 实现 atoi,将字符串转为整数. 在找到第一个非空字符之前,需要移除掉字符串中的空格字符.如果第一个非空字符是正号或负号,选取该符号,并将其与后面尽可能多的连续的数字组合 ...