题目链接:https://cn.vjudge.net/contest/281959#problem/D

题目大意:中文题目

具体思路:

首先说一下最小割:在最小代价的前提下,删除一些边之后,能够使得整个图不再联通。对于这个题,为什么要使用最小割?我的理解就是,建边的时候是按照st->文科->理科->ed.然后,每个人都只能选择一门,所以整个图肯定不连通,然后原来整个图的权值是输入的所有的值,为了使整个图不再联通,我们就需要花费最小的代价使得整个图不在联通,所以这个时候就需要用到最小割了。然后再说一下我之前一直不太理解的一个地方,为什么是所有的文科点连去都连向(都选文科的点),按照正常的方法不应该是拆点的形式才能满足都选文科? 我现在的理解就是,如果有一个点选择了文科,那么就肯定不能选择理科,所以这个满足所有人都选文科的这条路就肯定不能选了。

AC代码:

 #include<iostream>
#include<stack>
#include<queue>
#include<iomanip>
#include<stdio.h>
#include<cstring>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<map>
#include<vector>
using namespace std;
# define ll long long
# define maxn +
# define inf 0x3f3f3f3f
int prev[maxn];//边的编号
int head[maxn];
int f[][]= {{,-,,},{,,,-}};
struct node
{
int to;
int flow;
int nex;
} edge[maxn];
int num,st,ed;
void init()
{
memset(head,-,sizeof(head));
num=;
}
void addedge(int fr,int to,int flow)
{
edge[num].to=to;
edge[num].flow=flow;
edge[num].nex=head[fr];
head[fr]=num++;
edge[num].to=fr;
edge[num].flow=;
edge[num].nex=head[to];
head[to]=num++;
}
bool bfs()
{
memset(prev,-,sizeof(prev));
prev[st]=;
queue<int>q;
q.push(st);
while(!q.empty())
{
int top=q.front();
q.pop();
for(int i=head[top]; i!=-; i=edge[i].nex)
{
int temp=edge[i].to;
if(prev[temp]==-&&edge[i].flow>)
{
prev[temp]=prev[top]+;
q.push(temp);
}
}
}
return prev[ed]!=-;
}
int dfs(int u,int flow)
{
if(u==ed)
return flow;
int res=;
for(int i=head[u]; i!=-; i=edge[i].nex)
{
int t=edge[i].to;
if(prev[t]==(prev[u]+)&&edge[i].flow>)
{
int temp=dfs(t,min(flow,edge[i].flow));
edge[i].flow-=temp;
edge[i^].flow+=temp;
res+=temp;
flow-=temp;
if(flow==)
break;
}
}
if(res==)
prev[u]=-;
return res;
}
int n,m;
int dinic()
{
int ans=;
while(bfs())
{
ans+=dfs(st,inf);
}
return ans;
}
bool judge(int t1,int t2)
{
if(t1>=&&t1<=n&&t2>=&&t2<=m)
return true;
return false;
}
int main()
{
init();
int sum=;
int tmp;
st=1e5,ed=1e5+;
scanf("%d %d",&n,&m);
for(int i=; i<=n; i++)
{
for(int j=; j<=m; j++)
{
scanf("%d",&tmp);
sum+=tmp;
addedge((i-)*m+j,ed,tmp);
}
}
for(int i=; i<=n; i++)
{
for(int j=; j<=m; j++)
{
scanf("%d",&tmp);
sum+=tmp;
addedge(st,(i-)*m+j,tmp);
}
}
for(int i=; i<=n; i++)
{
for(int j=; j<=m; j++)
{
scanf("%d",&tmp);
addedge((i-)*m+j,((i-)*m+j)+n*m,inf);
addedge(((i-)*m+j)+n*m,ed,tmp);
sum+=tmp;
for(int k=; k<; k++)
{
int x=i+f[][k];
int y=j+f[][k];
if(judge(x,y))
addedge((x-)*m+y,((i-)*m+j)+n*m,inf);
}
}
}
for(int i=; i<=n; i++)
{
for(int j=; j<=m; j++)
{
scanf("%d",&tmp);
sum+=tmp;
addedge(((i-)*m+j)+n*m*,(i-)*m+j,inf);
addedge(st,((i-)*m+j)+n*m*,tmp);
for(int k=; k<; k++)
{
int x=i+f[][k];
int y=j+f[][k];
if(judge(x,y))
addedge(((i-)*m+j)+n*m*,(x-)*m+y,inf);
}
}
}
// cout<<1<<endl;
int ans=dinic();
// cout<<1<<endl;
printf("%d\n",sum-ans);
return ;
}

D - 文理分科 HYSBZ - 3894(最小割)的更多相关文章

  1. 【题解】 bzoj3894: 文理分科 (网络流/最小割)

    bzoj3894,懒得复制题面,戳我戳我 Solution: 首先这是一个网络流,应该还比较好想,主要就是考虑建图了. 我们来分析下题面,因为一个人要么选文科要么选理科,相当于两条流里面割掉一条(怎么 ...

  2. BZOJ3894/LG4313 文理分科 新建点最小割

    问题描述 BZOJ3894 LG4313 题解 显然一个人只能选文/理 -> 一个人只能属于文(S).理(T)集合中的一个 可以把选择文得到 \(art\) 的收益看做选择文失去 \(scien ...

  3. BZOJ 3894 / Luogu P4313 文理分科 (拆点最小割)

    题面 中文题面- BZOJ 传送门 Luogu 传送门 分析 这道题类似于BZOJ 3774 最优选择,然后这里有一篇博客写的很好- Today_Blue_Rainbow's Blog 应该看懂了吧- ...

  4. BZOJ 3894: 文理分科 [最小割]

    3894: 文理分科 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 674  Solved: 392[Submit][Status][Discuss] ...

  5. [BZOJ 3894] 文理分科 【最小割】

    题目链接:BZOJ - 3894 题目分析 最小割模型,设定一个点与 S 相连表示选文,与 T 相连表示选理. 那么首先要加上所有可能获得的权值,然后减去最小割,即不能获得的权值. 那么对于每个点,从 ...

  6. BZOJ 3894 Luogu P4313 文理分科 (最小割)

    题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=3894 (luogu) https://www.luogu.org/pro ...

  7. bzoj3894: 文理分科(还是那道最小割)

    3894: 文理分科 题目:传送门 感谢波老师没有来D飞我,让我做出了这题... 题解: 这题其实和我做的上一题(bzoj2132)很像,所以就不写题意了. 依然是那最小割... 这题给出了四个利益矩 ...

  8. BZOJ_3894_文理分科&&BZOJ_2127_happiness_最小割

    BZOJ_3894_文理分科_最小割 Description  文理分科是一件很纠结的事情!(虽然看到这个题目的人肯定都没有纠 结过)  小P所在的班级要进行文理分科.他的班级可以用一个n*m的矩阵进 ...

  9. BZOJ3894文理分科——最小割

    题目描述  文理分科是一件很纠结的事情!(虽然看到这个题目的人肯定都没有纠 结过)  小P所在的班级要进行文理分科.他的班级可以用一个n*m的矩阵进行 描述,每个格子代表一个同学的座位.每位同学必须从 ...

随机推荐

  1. Spark_RDD之简单Java函数接口

    函数名 实现的方法 用途 Function<T, R> R call(T) 接收一个输入值并返回一个输出值,用于类似 map() 和filter() 等操作中 Function2<T ...

  2. Luogu3835 【模板】可持久化平衡树(fhq-treap)

    fhq-treap,也即非旋treap,可以在不进行旋转操作的前提下维护treap.由于不需要旋转,可以对其可持久化. fhq-treap的基本操作是merge和split,并且通过这两个操作实现对t ...

  3. 【 Gym - 101138J 】Valentina and the Gift Tree(树链剖分)

    BUPT2017 wintertraining(15) 4 D Gym - 101138J 数据 题意 n个节点的一棵树,每个节点的权值为g,q个询问,树上的节点U-V,求U到V的路径的最大子段和. ...

  4. 挂载文件系统出现"kernel panic..." 史上最全解决方案

    问:挂载自己制作的文件系统卡在这里: NET: Registered protocol family 1 NET: Registered protocol family 17 VFS: Mounted ...

  5. 利用Python攻破12306的最后一道防线

    各位同学大家好,我是强子,好久没跟大家带来最新的技术文章了,最近有好几个同学问我12306自动抢票能否实现,我就趁这两天有时间用Python做了个12306自动抢票的项目,在这里我来带着大家一起来看看 ...

  6. 洛谷 P1110 [ZJOI2007]报表统计 解题报告

    P1110 [ZJOI2007]报表统计 题目描述 \(Q\)的妈妈是一个出纳,经常需要做一些统计报表的工作.今天是妈妈的生日,小\(Q\)希望可以帮妈妈分担一些工作,作为她的生日礼物之一. 经过仔细 ...

  7. 洛谷 P2345 奶牛集会 解题报告

    P2345 奶牛集会 题目背景 MooFest, 2004 Open 题目描述 约翰的N 头奶牛每年都会参加"哞哞大会".哞哞大会是奶牛界的盛事.集会上的活动很 多,比如堆干草,跨 ...

  8. py3+urllib+re,爬虫下载捧腹网图片

    实现原理及思路请参考我的另外几篇爬虫实践博客 py3+urllib+bs4+反爬,20+行代码教你爬取豆瓣妹子图:http://www.cnblogs.com/UncleYong/p/6892688. ...

  9. C# 类&结构体&枚举

    类: class Lei  //要和static void Main(string[] args)平级: { public int lei_int;  //public是关键字,代表访问权限,这里是公 ...

  10. 应用程序发生异常 unknown software exception (0xc00000fd)... - 栈溢出(Stack overflow)

    今天在写程序的时候,弹出这样的提示对话框: 应用程序发生异常 unknown software exception (0xc00000fd): 相关代码是这样,在一个函数中读取一个csv文件,先根据这 ...