传送门

推荐去bzoj看个视频了解一下 不要妄想视频直接告诉你题解 但是视频告诉了你后面要用的东西

首先我们要求的是\(x^2+y^2=n^2(x,y\in Z)\)的\((x,y)\)对数,可以转化成\(x^2+y^2=n^2(x>0,y\ge0,x,y\in Z)\)的\((x,y)\)对数\(*4\)

注意到共轭复数之积\((a+bi)(a-bi)=a^2+b^2\),所以改为求\((x+yi)(x-yi)=n^2(x>0,y\ge0,x,y\in Z)\)的方案数

把\(n^2\)分解质因数,得到\(n^2=p_1^{k_1}*p_2^{k_2}...\),有个结论,是除以4剩余1的质数可以拆成两个共轭复数的形式,于是我们就可以继续分解,得到若干对共轭复数和一些质数.现在要分成一对共轭复数,所以所有的质数要平均分在两边,剩下的复数,如果\((x+yi)\)在左边,\((x-yi)\)就要在右边,反之同理.所以答案就是\(4*(\prod (k_i+1)*[p_i\ mod\ 4=1])\)

吗?

不然呢

这里请结合代码思考一下

#include<bits/stdc++.h>
#define LL long long
#define il inline
#define re register
#define db double
#define eps (1e-5) using namespace std;
const int N=500+10,M=5000+10;
il LL rd()
{
LL x=0,w=1;char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
int n;
LL ans=1; int main()
{
n=rd();
int m=sqrt(n);
for(int i=2;i<=m&&n>1;i++)
if(n%i==0)
{
int cn=0;
while(n%i==0) ++cn,n/=i;
if(i%4==1) ans*=cn<<1|1;
}
if(n>1&&n%4==1) ans*=3;
printf("%lld\n",ans<<2);
return 0;
}

推荐阅读xzz_233's sol

luogu P2508 [HAOI2008]圆上的整点的更多相关文章

  1. 2021.12.06 P2508 [HAOI2008]圆上的整点(数论+ π )

    2021.12.06 P2508 [HAOI2008]圆上的整点(数论+ \(\pi\) ) https://www.luogu.com.cn/problem/P2508 题意: 求一个给定的圆 \( ...

  2. 洛谷P2508 [HAOI2008]圆上的整点

    题目描述 求一个给定的圆$ (x^2+y^2=r^2) $,在圆周上有多少个点的坐标是整数. 输入格式 \(r\) 输出格式 整点个数 输入输出样例 输入 4 输出 4 说明/提示 \(n\le 20 ...

  3. P2508 [HAOI2008]圆上的整点

    题目描述 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. 输入输出格式 输入格式: r 输出格式: 整点个数 输入输出样例 输入样例#1: 复制 4 输出样例#1: 复制 ...

  4. [bzoj1041] [洛谷P2508] [HAOI2008] 圆上的整点

    Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 只有一个正整数n,n<=2000 000 000 Output 整点个数 Samp ...

  5. BZOJ 1041: [HAOI2008]圆上的整点

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3621  Solved: 1605[Submit][Sta ...

  6. bzoj 1041: [HAOI2008]圆上的整点 数学

    1041: [HAOI2008]圆上的整点 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...

  7. bzoj 1041: [HAOI2008]圆上的整点 本原勾股數組

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2027  Solved: 853[Submit][Stat ...

  8. 1041: [HAOI2008]圆上的整点

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4298  Solved: 1944[Submit][Sta ...

  9. BZOJ 1041: [HAOI2008]圆上的整点【数论,解方程】

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4210  Solved: 1908[Submit][Sta ...

随机推荐

  1. python面对对象编程中会用到的装饰器

    1.property 用途:用来将对像的某个方法伪装成属性来提高代码的统一性. class Goods: #商品类 discount = 0.8 #商品折扣 def __init__(self,nam ...

  2. BZOJ3585&3339mex——主席树

    题目描述 有一个长度为n的数组{a1,a2,...,an}.m次询问,每次询问一个区间内最小没有出现过的自然数. 输入 第一行n,m.第二行为n个数.从第三行开始,每行一个询问l,r. 输出 一行一个 ...

  3. gym 101064 G.The Declaration of Independence (主席树)

    题目链接: 题意: n个操作,有两种操作: E p  c    在序号为p的队列尾部插入c得到新的队列,序号为i D p   查询并删除序号为p的队列顶部的元素,得到序号为i的新队列 思路: 需要查询 ...

  4. 自学Aruba3.1-Aruba配置架构-WLAN配置架构

    点击返回:自学Aruba之路 自学Aruba3.1-Aruba配置架构- WLAN配置架构  WLAN配置架构 1. AP group : Aruba无线控制器通过AP Group来构建无线网络配置参 ...

  5. android handler msg的使用 实现进度条

    package com.app.threadtest; import android.app.Activity; import android.os.Bundle; import android.os ...

  6. 沉迷Link-Cut tree无法自拔之:[BZOJ3669][Noi2014] 魔法森林

    来自蒟蒻 \(Hero \_of \_Someone\) 的 \(LCT\) 学习笔记 $ $ 有一个很好的做法是 \(spfa\) ,但是我们不聊 \(spfa\) , 来聊 \(LCT\) \(L ...

  7. BZOJ 5308 [ZJOI2018] Day2T2 胖 | 二分 ST表

    题目链接 LOJ 2529 BZOJ 5308 题解 这么简单的题 为什么考场上我完全想不清楚 = = 对于k个关键点中的每一个关键点\(a\),二分它能一度成为哪些点的最短路起点(显然这些点在一段包 ...

  8. 「loj3057」「hnoi2019」校园旅行

    题目 一个n个点m条边的无向图,每个点有0 / 1 的标号; 有q个询问,每次询问(u,v)直接是否存在回文路径(可以经过重复的点和边); $1 \le n \le 5 \times 10^3  , ...

  9. (转)搭建Maven私服(使用Nexus)

    搭建私服可以做什么? 1.如果公司开发组的开发环境全部内网,这时如何连接到在互联网上的Maven中央仓库呢? 2.如果公司经常开发一些公共的组件,如何共享给各个开发组,使用拷贝方式吗?如果这样,公共库 ...

  10. MATLAB:图像选取局部区域滤波(roicolor、roipoly、roifill、fspecial、roifilt2函数)

    对于某些特殊的图像处理,我们不希望将整张图都进行图像处理.这个时候就用到了roicolor.roipoly.roifill.fspecial.roifilt2函数.代码实现过程如下: close al ...