传送门

推荐去bzoj看个视频了解一下 不要妄想视频直接告诉你题解 但是视频告诉了你后面要用的东西

首先我们要求的是\(x^2+y^2=n^2(x,y\in Z)\)的\((x,y)\)对数,可以转化成\(x^2+y^2=n^2(x>0,y\ge0,x,y\in Z)\)的\((x,y)\)对数\(*4\)

注意到共轭复数之积\((a+bi)(a-bi)=a^2+b^2\),所以改为求\((x+yi)(x-yi)=n^2(x>0,y\ge0,x,y\in Z)\)的方案数

把\(n^2\)分解质因数,得到\(n^2=p_1^{k_1}*p_2^{k_2}...\),有个结论,是除以4剩余1的质数可以拆成两个共轭复数的形式,于是我们就可以继续分解,得到若干对共轭复数和一些质数.现在要分成一对共轭复数,所以所有的质数要平均分在两边,剩下的复数,如果\((x+yi)\)在左边,\((x-yi)\)就要在右边,反之同理.所以答案就是\(4*(\prod (k_i+1)*[p_i\ mod\ 4=1])\)

吗?

不然呢

这里请结合代码思考一下

#include<bits/stdc++.h>
#define LL long long
#define il inline
#define re register
#define db double
#define eps (1e-5) using namespace std;
const int N=500+10,M=5000+10;
il LL rd()
{
LL x=0,w=1;char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
int n;
LL ans=1; int main()
{
n=rd();
int m=sqrt(n);
for(int i=2;i<=m&&n>1;i++)
if(n%i==0)
{
int cn=0;
while(n%i==0) ++cn,n/=i;
if(i%4==1) ans*=cn<<1|1;
}
if(n>1&&n%4==1) ans*=3;
printf("%lld\n",ans<<2);
return 0;
}

推荐阅读xzz_233's sol

luogu P2508 [HAOI2008]圆上的整点的更多相关文章

  1. 2021.12.06 P2508 [HAOI2008]圆上的整点(数论+ π )

    2021.12.06 P2508 [HAOI2008]圆上的整点(数论+ \(\pi\) ) https://www.luogu.com.cn/problem/P2508 题意: 求一个给定的圆 \( ...

  2. 洛谷P2508 [HAOI2008]圆上的整点

    题目描述 求一个给定的圆$ (x^2+y^2=r^2) $,在圆周上有多少个点的坐标是整数. 输入格式 \(r\) 输出格式 整点个数 输入输出样例 输入 4 输出 4 说明/提示 \(n\le 20 ...

  3. P2508 [HAOI2008]圆上的整点

    题目描述 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. 输入输出格式 输入格式: r 输出格式: 整点个数 输入输出样例 输入样例#1: 复制 4 输出样例#1: 复制 ...

  4. [bzoj1041] [洛谷P2508] [HAOI2008] 圆上的整点

    Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 只有一个正整数n,n<=2000 000 000 Output 整点个数 Samp ...

  5. BZOJ 1041: [HAOI2008]圆上的整点

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3621  Solved: 1605[Submit][Sta ...

  6. bzoj 1041: [HAOI2008]圆上的整点 数学

    1041: [HAOI2008]圆上的整点 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...

  7. bzoj 1041: [HAOI2008]圆上的整点 本原勾股數組

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2027  Solved: 853[Submit][Stat ...

  8. 1041: [HAOI2008]圆上的整点

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4298  Solved: 1944[Submit][Sta ...

  9. BZOJ 1041: [HAOI2008]圆上的整点【数论,解方程】

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4210  Solved: 1908[Submit][Sta ...

随机推荐

  1. jmeter简单录制脚本

    1 创建HTTP请求默认值. --添加线程组:右击"测试计划"→添加→Threads(Users)→线程组,建议重命名线程组增强可读性. --添加HTTH请求默认值:右击" ...

  2. Spring各个jar包的作用

    Spring AOP:Spring的面向切面编程,提供AOP(面向切面编程)的实现 Spring Aspects:Spring提供的对AspectJ框架的整合Spring Beans:Spring I ...

  3. BZOJ2793[Poi2012]Vouchers——枚举

    题目描述 考虑正整数集合,现在有n组人依次来取数,假设第i组来了x人,他们每个取的数一定是x的倍数,并且是还剩下的最小的x个.正整数中有m个数被标成了幸运数,问有哪些人取到了幸运数. 输入 第一行一个 ...

  4. BZOJ2214[Poi2011]Shift——模拟

    题目描述 Byteasar bought his son Bytie a set of blocks numbered from to and arranged them in a row in a ...

  5. day8 笔记

    文件操作的最简单步骤open():打开文件,将句柄赋值给一个变量 read()write()等:操作文件 close():关闭文件,一定要关闭文件 ps:python会帮助你保存数据关闭文件,但是要在 ...

  6. MT【57】2017联赛一试解答倒数第二题:一道不等式的最值

    注:康拓诺维奇不等式的应用

  7. 【BZOJ1822】[JSOI2010]冷冻波(二分,网络流)

    [BZOJ1822][JSOI2010]冷冻波(二分,网络流) 题面 BZOJ 洛谷 题解 先预处理每个巫妖可以打到哪些小精灵,然后二分答案,网络流判定即可. #include<iostream ...

  8. pandas merge

    merge pandas的merge方法提供了一种类似于SQL的内存链接操作,官网文档提到它的性能会比其他开源语言的数据操作(例如R)要高效. merge的参数 on:列名,join用来对齐的那一列的 ...

  9. C# 面向对象零碎知识点

    obgect: 所有数据类型都是obgect类型: 万能类型 var :原来的变量不变,替换成var: 动态类型 dynamic :类似object,遍历需要转: is  as: 类型转换运算符: ( ...

  10. jsp关闭或刷新浏览器(解决浏览器不兼容),请求后台onbeforeunload、onunload

    jsp关闭或刷新浏览器(解决浏览器不兼容),请求后台  onbeforeunload.onunload 1.看代码: function test(e) { var json = "退出,清理 ...