(zhuan) Prioritized Experience Replay
Prioritized Experience Replay
JAN 26, 2016
Schaul, Quan, Antonoglou, Silver, 2016
This Blog from: http://pemami4911.github.io/paper-summaries/2016/01/26/prioritizing-experience-replay.html
Summary
Uniform sampling from replay memories is not an efficient way to learn. Rather, using a clever prioritization scheme to label the experiences in replay memory, learning can be carried out much faster and more effectively. However, certain biases are introduced by this non-uniform sampling; hence, weighted importance sampling must be employed in order to correct for this. It is shown through experimentation with the Atari Learning Environment that prioritized sampling with Double DQN significantly outperforms the previous state-of-the-art Atari results.
Evidence
- Implemented Double DQN with main changes being the addition of prioritized experience replay sampling and importance-sampling
- Tested on Atari Learning Environment
Strengths
- Lots of insight about the repercussions of this research and plenty of discussion on extensions
Notes
- The magnitude of the TD-error indicates how unexpected a certain transition was
- The TD-error can be a poor estimate about the amount an agent can learn from a transition when rewards are noisy
- Problems with greedily selecting experiences:
- High-error transitions are replayed too frequently
- Low-error transitions are almost entirely ignored
- Expensive to update entire replay memory, so errors are only updated for transitions that are replayed
- Lack of diversity leads to over-fitting
- A stochastic sampling method is introduced which finds a balance between greedy prioritization and random sampling (current method)
- Two variants of P(i)=pαi∑kpαkP(i)=piα∑kpkα were studied, where PP is the probability of sampling transition ii, pi>0pi>0 is the priority of transition ii, and the exponent αα determines how much prioritization is used, with α=0α=0 the uniform case
- Variant 1: proportional prioritization, where pi=|δi|+ϵpi=|δi|+ϵ is used and ϵϵ is a small positive constant that prevents the edge-case of transitions not being revisited once their error is zero. δδ is the TD-error
- Variant 2: rank-based prioritization, with pi=1rank(i)pi=1rank(i) where rank(i)rank(i) is the rank of transition ii when the replay memory is sorted according to δiδi
- Key insight The estimation of the expected value of the total discounted reward with stochastic updates requires that the updates correspond to the same distribution as the expectation. Prioritized replay introduces a bias that changes this distribution uncontrollably. This can be corrected by using importance-sampling (IS) weights wi=(1N1P(i))βwi=(1N1P(i))β that fully compensate for the non-uniform probabilities P(i)P(i) if β=1β=1. These weights are folded into the Q-learning update by using wi×δiwi×δi, which is normalized by 1maxiwi1maxiwi
- IS is annealed from β0β0 to 1, which means its affect is felt more strongly at the end of the stochastic process; this is because the unbiased nature of the updates in RL is most important near convergence
- IS also reduces the gradient magnitudes which is good for optimization; allows the algorithm to follow the curvature of highly non-linear optimization landscapes because the Taylor expansion (gradient descent) is constantly re-approximated
(zhuan) Prioritized Experience Replay的更多相关文章
- 论文阅读之:PRIORITIZED EXPERIENCE REPLAY
PRIORITIZED EXPERIENCE REPLAY ICLR 2016 经验回放使得 online reinforcement learning agent 能够记住并且回放过去的经验.在先前 ...
- 强化学习中的经验回放(The Experience Replay in Reinforcement Learning)
一.Play it again: reactivation of waking experience and memory(Trends in Neurosciences 2010) SWR发放模式不 ...
- 【深度强化学习】Curriculum-guided Hindsight Experience Replay读后感
目录 导读 目录 正文 Abstract[摘要] Introduction[介绍] 导读 看任何一个领域的文章,一定要看第一手资料.学习他们的思考方式,论述逻辑,得出一点自己的感悟.因此,通过阅读pa ...
- Revisiting Fundamentals of Experience Replay
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! ICML 2020 Abstract 经验回放对于深度RL中的异策算法至关重要,但是在我们的理解上仍然存在很大差距.因此,我们对Q学习方法 ...
- 强化学习(十一) Prioritized Replay DQN
在强化学习(十)Double DQN (DDQN)中,我们讲到了DDQN使用两个Q网络,用当前Q网络计算最大Q值对应的动作,用目标Q网络计算这个最大动作对应的目标Q值,进而消除贪婪法带来的偏差.今天我 ...
- 【转载】 强化学习(十一) Prioritized Replay DQN
原文地址: https://www.cnblogs.com/pinard/p/9797695.html ------------------------------------------------ ...
- (zhuan) Deep Reinforcement Learning Papers
Deep Reinforcement Learning Papers A list of recent papers regarding deep reinforcement learning. Th ...
- (zhuan) Deep Deterministic Policy Gradients in TensorFlow
Deep Deterministic Policy Gradients in TensorFlow AUG 21, 2016 This blog from: http://pemami49 ...
- (转)Let’s make a DQN 系列
Let's make a DQN 系列 Let's make a DQN: Theory September 27, 2016DQN This article is part of series Le ...
随机推荐
- 【转】查看sqlserver被锁的表以及如何解锁
查看被锁表: select request_session_id spid,OBJECT_NAME(resource_associated_entity_id) tableName from sys. ...
- eclipse maven install没反应解决办法
.打开eclipse的Window菜单-->java-->Installed JREs .点击用的jdk,edit,在Default VM arguments里面填入-Dmaven.mul ...
- Python学习记录之-----类
面向过程 VS 面向对象 编程范式 编程是 程序 员 用特定的语法+数据结构+算法组成的代码来告诉计算机如何执行任务的过程 , 一个程序是程序员为了得到一个任务结果而编写的一组指令的集合,正所谓条条大 ...
- ESB(Enterprise Service Bus)企业服务总线介绍
ESB(Enterprise Service Bus)企业服务总线介绍 ESB全称为Enterprise Service Bus,即企业服务总线.它是传统中间件技术与XML.Web服务等技术结合的产物 ...
- Linux下java nohup 后台运行关闭后进程停止的原因,不挂断后台运行命令
Linux下java nohup 后台运行关闭后进程停止的原因,不挂断后台运行命令 今天写sh脚本发现一终止命令程序就停止运行了,检查了很久才发现后面少了个&字符导致的!错误写法:nohup ...
- [转载] Oracle之内存结构(SGA、PGA)
2011-05-10 14:57:53 分类: Linux 一.内存结构 SGA(System Global Area):由所有服务进程和后台进程共享: PGA(Program Global Area ...
- Django项目----快速实现增删改查组件(起步阶段!!!)
一.相关知识点回顾 1.什么是反射? 可以用字符串的方式去访问对象的属性 2.反射有四种方法? hasattr(object,name):判断一个对象是不是有name属性或者方法 getattr: ...
- python-数据分析与展示(Numpy、matplotlib、pandas)---1
笔记内容整理自mooc上北京理工大学嵩天老师python系列课程数据分析与展示,本人小白一枚,如有不对,多加指正 1.ndarray对象的属性 .ndim..shape..size(元素个数,不是占用 ...
- 处理jquery的ajax请求session过期跳转到登录页面
首先需要在拦截器中判断是否是ajax请求,如果是 if(isAjaxRequest(request)){//ajax请求 response.setHeader("sessionstatus& ...
- 原生态JDBC
原生态JDBC JDBC(Java DataBase Connectivity,java数据库连接)是一种用于执行SQL语句的Java API.JDBC是java访问数据库的标准规范,可以为不同的关系 ...