本課主題

  • Numpy 的介绍和操作实战
  • Series 的介绍和操作实战
  • DataFrame 的介绍和操作实战

Numpy 的介绍和操作实战

numpy 是 Python 在数据计算领域里很常用的模块

import numpy as np
np.array([11,22,33]) #接受一个列表数据
  1. 创建 numpy array

    >>> import numpy as np
    >>> mylist = [1,2,3]
    >>> x = np.array(mylist)
    >>> x
    array([1, 2, 3])
    >>> y = np.array([4,5,6])
    >>> y
    array([4, 5, 6])
    >>> m = np.array([[7,8,9],[10,11,12]])
    >>> m
    array([[ 7, 8, 9],
    [10, 11, 12]])

    创建 numpy array(例子)

  2. 查看 numpy array 的
    >>> m.shape #array([1, 2, 3])
    (2, 3) >>> x.shape #array([4, 5, 6])
    (3,) >>> y.shape #array([[ 7, 8, 9], [10, 11, 12]])
    (3,)
  3. numpy.arrange
    >>> n = np.arange(0,30,2)
    >>> n
    array([ 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28])

    numpy.arrange( )(例子)

  4. 改变numpy array的位置
    >>> n = np.arange(0,30,2)
    >>> n
    array([ 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28])
    >>> n.shape
    (15,) >>> n = n.reshape(3,5) #从15列改成3列5行
    >>> n array([[ 0, 2, 4, 6, 8],
    [10, 12, 14, 16, 18],
    [20, 22, 24, 26, 28]])

    numpy.reshape( )(例子一)

    >>> o = np.linspace(0,4,9)
    >>> o
    array([ 0. , 0.5, 1. , 1.5, 2. , 2.5, 3. , 3.5, 4. ])
    >>> o.resize(3,3)
    >>> o
    array([[ 0. , 0.5, 1. ],
    [ 1.5, 2. , 2.5],
    [ 3. , 3.5, 4. ]])

    numpy.reshape( )(例子二)

  5. numpy.ones( ) ,numpy.zeros( ),numpy.eye( )
    >>> r1 = np.ones((3,2))
    >>> r1
    array([[ 1., 1.],
    [ 1., 1.],
    [ 1., 1.]]) >>> r1 = np.zeros((2,3))
    >>> r1
    array([[ 0., 0., 0.],
    [ 0., 0., 0.]]) >>> r2 = np.eye(3)
    >>> r2
    array([[ 1., 0., 0.],
    [ 0., 1., 0.],
    [ 0., 0., 1.]])

    numpy.ones/zeros/eye( )(例子)

    可以定义整数

    >>> r5 = np.ones([2,3], int)
    >>> r5
    array([[1, 1, 1],
    [1, 1, 1]]) >>> r5 = np.ones([2,3])
    >>> r5
    array([[ 1., 1., 1.],
    [ 1., 1., 1.]])

    numpy.ones(x,int)(例子)

  6. numpy.diag( )
    >>> y = np.array([4,5,6])
    >>> y
    array([4, 5, 6]) >>> np.diag(y)
    array([[4, 0, 0],
    [0, 5, 0],
    [0, 0, 6]])

    diag( )(例子)

  7. 复制 numpy array
    >>> r3 = np.array([1,2,3] * 3)
    >>> r3
    array([1, 2, 3, 1, 2, 3, 1, 2, 3]) >>> r4 = np.repeat([1,2,3],3)
    >>> r4
    array([1, 1, 1, 2, 2, 2, 3, 3, 3])

    复制numpy array(例子)

  8. numpy中的 vstack和 hstack
    >>> r5 = np.ones([2,3], int)
    >>> r5
    array([[1, 1, 1],
    [1, 1, 1]]) >>> r6 = np.vstack([r5,2*r5])
    >>> r6
    array([[1, 1, 1],
    [1, 1, 1],
    [2, 2, 2],
    [2, 2, 2]]) >>> r7 = np.hstack([r5,2*r5])
    >>> r7
    array([[1, 1, 1, 2, 2, 2],
    [1, 1, 1, 2, 2, 2]])

    numpy.vstack( )和np.hstack( )(例子)

  9. numpy 中的加减乘除操作一 (+-*/)
    >>> mylist = [1,2,3]
    >>> x = np.array(mylist)
    >>> y = np.array([4,5,6]) >>> x+y
    array([5, 7, 9]) >>> x-y
    array([-3, -3, -3]) >>> x*y
    array([ 4, 10, 18]) >>> x**2
    array([1, 4, 9]) >>> x.dot(y)
    32

    numpy中的加减乘除(例子一)

  10. numpy 中的加减乘除操作二:sum( )、max( )、min( )、mean( )、std( )
    >>> a = np.array([1,2,3,4,5])
    >>> a.sum()
    15 >>> a.max()
    5 >>> a.min()
    1 >>> a.mean()
    3.0 >>> a.std()
    1.4142135623730951 >>> a.argmax()
    4 >>> a.argmin()
    0

    numpy中的加减乘除(例子二)

  11. 查看numpy array 的数据类型
    >>> y = np.array([4,5,6])
    >>> z = np.array([y, y**2])
    >>> z
    array([[ 4, 5, 6],
    [16, 25, 36]]) >>> z.shape
    (2, 3) >>> z.T.shape
    (3, 2) >>> z.dtype
    dtype('int64') >>> z = z.astype('f') >>> z.dtype
    dtype('float32')

    numpy array 的数据类型

  12. numpy 中的索引和切片
    >>> s = np.arange(13)
    >>> s
    array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) >>> s = np.arange(13) ** 2
    >>> s
    array([ 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144]) >>> s[0],s[4],s[0:3]
    (0, 16, array([0, 1, 4])) >>> s[1:5]
    array([ 1, 4, 9, 16]) >>> s[-4:]
    array([ 81, 100, 121, 144]) >>> s[-5:-2]
    array([ 64, 81, 100])

    numpy索引和切片(例子一)

    >>> r = np.arange(36)
    >>> r.resize((6,6))
    >>> r
    array([[ 0, 1, 2, 3, 4, 5],
    [ 6, 7, 8, 9, 10, 11],
    [12, 13, 14, 15, 16, 17],
    [18, 19, 20, 21, 22, 23],
    [24, 25, 26, 27, 28, 29],
    [30, 31, 32, 33, 34, 35]]) >>> r[2,2]
    14 >>> r[3,3:6]
    array([21, 22, 23]) >>> r[:2,:-1]
    array([[ 0, 1, 2, 3, 4],
    [ 6, 7, 8, 9, 10]]) >>> r[-1,::2]
    array([30, 32, 34]) >>> r[r > 30] #取r大于30的数据
    array([31, 32, 33, 34, 35]) >>> re2 = r[r > 30] = 30
    >>> re2
    30
    >>> r8 = r[:3,:3]
    >>> r8 array([[ 0, 1, 2],
    [ 6, 7, 8],
    [12, 13, 14]]) >>> r8[:] = 0 >>> r8
    array([[0, 0, 0],
    [0, 0, 0],
    [0, 0, 0]]) >>> r
    array([[ 0, 0, 0, 3, 4, 5],
    [ 0, 0, 0, 9, 10, 11],
    [ 0, 0, 0, 15, 16, 17],
    [18, 19, 20, 21, 22, 23],
    [24, 25, 26, 27, 28, 29],
    [30, 30, 30, 30, 30, 30]])

    numpy索引和切片(例子二)

  13. copy numpy array 的数组
    >>> r = np.arange(36)
    >>> r.resize((6,6))
    >>> r_copy = r.copy()
    >>> r
    array([[ 0, 1, 2, 3, 4, 5],
    [ 6, 7, 8, 9, 10, 11],
    [12, 13, 14, 15, 16, 17],
    [18, 19, 20, 21, 22, 23],
    [24, 25, 26, 27, 28, 29],
    [30, 31, 32, 33, 34, 35]]) >>> r_copy
    array([[ 0, 1, 2, 3, 4, 5],
    [ 6, 7, 8, 9, 10, 11],
    [12, 13, 14, 15, 16, 17],
    [18, 19, 20, 21, 22, 23],
    [24, 25, 26, 27, 28, 29],
    [30, 31, 32, 33, 34, 35]]) >>> r_copy[:] = 10 >>> r_copy
    array([[10, 10, 10, 10, 10, 10],
    [10, 10, 10, 10, 10, 10],
    [10, 10, 10, 10, 10, 10],
    [10, 10, 10, 10, 10, 10],
    [10, 10, 10, 10, 10, 10],
    [10, 10, 10, 10, 10, 10]])

    copy( )例子

  14. 其他操作
    >>> test = np.random.randint(0,10,(4,3))
    >>> test
    array([[3, 5, 2],
    [7, 7, 9],
    [8, 9, 2],
    [2, 9, 1]]) >>> for row in test:
    ... print(row)
    ...
    [3 5 2]
    [7 7 9]
    [8 9 2]
    [2 9 1] >>> for i in range(len(test)):
    ... print(test[i])
    ...
    [3 5 2]
    [7 7 9]
    [8 9 2]
    [2 9 1] >>> for i, row in enumerate(test):
    ... print('row', i, 'is', row)
    ...
    row 0 is [3 5 2]
    row 1 is [7 7 9]
    row 2 is [8 9 2]
    row 3 is [2 9 1] >>> test2 = test ** 2
    >>> test2
    array([[ 9, 25, 4],
    [49, 49, 81],
    [64, 81, 4],
    [ 4, 81, 1]]) >>> for i,j, in zip(test,test2):
    ... print(i, '+', j, '=', i + j)
    ...
    [3 5 2] + [ 9 25 4] = [12 30 6]
    [7 7 9] + [49 49 81] = [56 56 90]
    [8 9 2] + [64 81 4] = [72 90 6]
    [2 9 1] + [ 4 81 1] = [ 6 90 2]
    >>>

    numpy array 的其他操作例子

Series 的介绍和操作实战

如果是输入一个字典类型的话,字典的键会自动变成 Index,然后它的值是Value

from pandas import Series, DataFrame
import pandas as pd
pd.Series(['Dog','Bear','Tiger','Moose','Giraffe','Hippopotamus','Mouse'], name='Animals') #接受一个列表类型的数据
def __init__(self, data=None, index=None, dtype=None, name=None,
copy=False, fastpath=False):

Series的__init__方法

  1. 创建 Series 类型
    第一:你可以传入一个列表或者是字典来创建 Series,如果传入的是列表,Python会自动把 [0,1,2] 作为 Series 的索引。
    第二:如果你传入的是字符串类型的数据,Series 返回的dtype是object;如果你传入的是数字类型的数据,Series 返回的dtype是int64

    >>> from pandas import Series, DataFrame
    >>> import pandas as pd
    >>> animals = ['Tiger','Bear','Moose'] >>> s1 = pd.Series(animals)
    >>> s1
    0 Tiger
    1 Bear
    2 Moose
    dtype: object >>> s2 = pd.Series([1,2,3])
    >>> s2
    0 1
    1 2
    2 3
    dtype: int64

    创建 Series

    Series如何处理 NaN的数据?

    >>> animals2 = ['Tiger','Bear',None]
    >>> s3 = pd.Series(animals2)
    >>> s3
    0 Tiger
    1 Bear
    2 None
    dtype: object >>> s4 = pd.Series([1,2,None])
    >>> s4
    0 1.0
    1 2.0
    2 NaN
    dtype: float64

    Series NaN数据(范例)

  2. Series 中的 NaN数据和如何检查 NaN数据是否相等,这时候需要调用 np.isnan( )方法
    >>> import numpy as np
    >>> np.nan == None
    False >>> np.nan == np.nan
    False >>> np.isnan(np.nan)
    True

    np.isnan( )

  3. Series 默应 Index 是 [0,1,2],但也可以自定义 Series 中的Index
    >>> import numpy as np
    >>> sports = {
    ... 'Archery':'Bhutan',
    ... 'Golf':'Scotland',
    ... 'Sumo':'Japan',
    ... 'Taekwondo':'South Korea'
    ... } >>> s5 = pd.Series(sports)
    >>> s5
    Archery Bhutan
    Golf Scotland
    Sumo Japan
    Taekwondo South Korea
    dtype: object >>> s5.index
    Index(['Archery', 'Golf', 'Sumo', 'Taekwondo'], dtype='object')

    自定义 Series 中的Index(例子一)

    >>> from pandas import Series, DataFrame
    >>> import pandas as pd
    >>> s6 = pd.Series(['Tiger','Bear','Moose'], index=['India','America','Canada'])
    >>> s6
    India Tiger
    America Bear
    Canada Moose
    dtype: object

    自定义 Series 中的Index(例子一)

  4. 查询 Series 的数据有两种方法,第一是通过index方法 e.g. s.iloc[2];第二是通过label方法 e.g. s.loc['America']
    >>> from pandas import Series, DataFrame
    >>> import pandas as pd
    >>> s6
    India Tiger
    America Bear
    Canada Moose
    dtype: object >>> s6.iloc[2] #获取 index2位置的数据
    'Moose' >>> s6.loc['America'] #获取 label: America 的值
    'Bear' >>> s6[1] #底层调用了 s6.iloc[1]
    'Bear' >>> s6['India'] #底层调用了 s6.loc['India']
    'Tiger'

    查询Series(例子)

  5. Series 的数据操作: sum( ),它底层也是调用 numpy 的方法
    >>> s7 = pd.Series([100.00,120.00,101.00,3.00])
    >>> s7
    0 100.0
    1 120.0
    2 101.0
    3 3.0
    dtype: float64 >>> total = 0
    >>> for item in s7:
    ... total +=item
    ...
    >>> total
    324.0 >>> total2 = np.sum(s7)
    >>> total2
    324.0

    np.sum(s7)

    >>> s8 = pd.Series(np.random.randint(0,1000,10000))
    >>> s8.head()
    0 25
    1 399
    2 326
    3 479
    4 603
    dtype: int64
    >>> len(s8)
    10000

    head( )例子

  6. Series 也可以存储混合型数据
    >>> s9 = pd.Series([1,2,3])
    >>> s9.loc['Animals'] = 'Bears'
    >>> s9
    0 1
    1 2
    2 3
    Animals Bears
    dtype: object

    混合型存储数据(例子)

  7. Series 中的 append( ) 用法
    >>> original_sports = pd.Series({'Archery':'Bhutan',
    ... 'Golf':'Scotland',
    ... 'Sumo':'Japan',
    ... 'Taekwondo':'South Korea'})
    >>> cricket_loving_countries = pd.Series(['Australia', 'Barbados','Pakistan','England'],
    ... index=['Cricket','Cricket','Cricket','Cricket'])
    >>> all_countries = original_sports.append(cricket_loving_countries) >>> original_sports
    Archery Bhutan
    Golf Scotland
    Sumo Japan
    Taekwondo South Korea
    dtype: object >>> cricket_loving_countries
    Cricket Australia
    Cricket Barbados
    Cricket Pakistan
    Cricket England
    dtype: object >>> all_countries
    Archery Bhutan
    Golf Scotland
    Sumo Japan
    Taekwondo South Korea
    Cricket Australia
    Cricket Barbados
    Cricket Pakistan
    Cricket England
    dtype: object

    Series类型的append( )

DataFrame

这是创建一个DataFrame对象的基本语句:接受字典类型的数据;字典中的Key (e.g. Animals, Owners) 对应 DataFrame中的Columns,它的 Value 也相当于数据库表中的每一行数据。

data = {
'Animals':['Dog','Bear','Tiger','Moose','Giraffe','Hippopotamus','Mouse'],
'Owners':['Chris','Kevyn','Bob','Vinod','Daniel','Fil','Stephanie']
}
df = DataFrame(data, columns=['Animals','Owners'])

基础操作

  1. 创建DataFrame

    >>> from pandas import Series, DataFrame
    >>> import pandas as pd
    >>> data = {'name':['yahoo','google','facebook'],
    ... 'marks':[200,400,800],
    ... 'price':[9,3,7]}
    >>> df = DataFrame(data)
    >>> df
    marks name price
    0 200 yahoo 9
    1 400 google 3
    2 800 facebook 7

    创建DataFrame(例子一)

    >>> df2 = DataFrame(data, columns=['name','price','marks'])
    >>> df2
    name price marks
    0 yahoo 9 200
    1 google 3 400
    2 facebook 7 800 >>> df3 = DataFrame(data, columns=['name','price','marks'], index=['a','b','c'])
    >>> df3
    name price marks
    a yahoo 9 200
    b google 3 400
    c facebook 7 800 >>> df4 = DataFrame(data, columns=['name','price','marks', 'debt'], index=['a','b','c'])
    >>> df4
    name price marks debt
    a yahoo 9 200 NaN
    b google 3 400 NaN
    c facebook 7 800 NaN

    创建DataFrame(例子二)

    >>> import pandas as pd
    >>> purchase_1 = pd.Series({'Name':'Chris','Item Purchased':'Dog Food','Cost':22.50})
    >>> purchase_2 = pd.Series({'Name':'Kelvin','Item Purchased':'Kitty Litter','Cost':2.50})
    >>> purchase_3 = pd.Series({'Name':'Vinod','Item Purchased':'Bird Seed','Cost':5.00})
    >>>
    >>> df = pd.DataFrame([purchase_1,purchase_2,purchase_3],index=['Store 1','Store 2','Store 1'])
    >>> df
    Cost Item Purchased Name
    Store 1 22.5 Dog Food Chris
    Store 2 2.5 Kitty Litter Kelvin
    Store 1 5.0 Bird Seed Vinod

    创建DataFrame(例子三)

  2. 查询 dataframe 的index:df.loc['index']
    >>> df.loc['Store 2']
    Cost 2.5
    Item Purchased Kitty Litter
    Name Kelvin
    Name: Store 2, dtype: object

    df.loc['Store 2']

    >>> df.loc['Store 1']
    Cost Item Purchased Name
    Store 1 22.5 Dog Food Chris
    Store 1 5.0 Bird Seed Vinod

    df.loc['Store 1']

    >>> df['Item Purchased']
    Store 1 Dog Food
    Store 2 Kitty Litter
    Store 1 Bird Seed
    Name: Item Purchased, dtype: object

    df['Item Purchased']

  3. 查 store1 的 cost 是多少
    >>> df.loc['Store 1', 'Cost']
    Store 1 22.5
    Store 1 5.0
    Name: Cost, dtype: float64

    df.loc['Store 1', 'Cost']

  4. 查询Cost大于3的Name
    >>> df['Name'][df['Cost']>3]
    Store 1 Chris
    Store 1 Vinod
    Name: Name, dtype: object

    df['Name'][df['Cost']>3]

  5. 查询DataFrame 的类型
    >>> type(df.loc['Store 2'])
    <class 'pandas.core.series.Series'>

    type( )例子

  6. drop dataframe (但这不会把原来的 dataframe drop 掉)
    >>> df.drop('Store 1')
    Cost Item Purchased Name
    Store 2 2.5 Kitty Litter Kelvin >>> df
    Cost Item Purchased Name
    Store 1 22.5 Dog Food Chris
    Store 2 2.5 Kitty Litter Kelvin
    Store 1 5.0 Bird Seed Vinod

    df.drop('Store 1')

    >>> copy_df = df.copy()
    >>> copy_df
    Cost Item Purchased Name
    Store 1 22.5 Dog Food Chris
    Store 2 2.5 Kitty Litter Kelvin
    Store 1 5.0 Bird Seed Vinod
    >>> copy_df = df.drop('Store 1')
    >>> copy_df
    Cost Item Purchased Name
    Store 2 2.5 Kitty Litter Kelvin

    把dataframe数据drop的例子

    也可以用 del 把 Column 列删除掉

    >>> del copy_df['Name']
    >>> copy_df
    Cost Item Purchased
    Store 2 2.5 Kitty Litter

    del copy_df['Name']

  7. set_index
  8. rename column
  9. 可以修改dataframe里的数据
    >>> df = pd.DataFrame([purchase_1,purchase_2,purchase_3],index=['Store 1','Store 2','Store 1'])
    >>> df
    Cost Item Purchased Name
    Store 1 22.5 Dog Food Chris
    Store 2 2.5 Kitty Litter Kelvin
    Store 1 5.0 Bird Seed Vinod >>> df['Cost'] = df['Cost'] * 0.8
    >>> df
    Cost Item Purchased Name
    Store 1 18.0 Dog Food Chris
    Store 2 2.0 Kitty Litter Kelvin
    Store 1 4.0 Bird Seed Vinod

    df['Cost'] * 0.8

    >>> df = pd.DataFrame([purchase_1,purchase_2,purchase_3],index=['Store 1','Store 2','Store 1'])
    >>> costs = df['Cost']
    >>> costs
    Store 1 22.5
    Store 2 2.5
    Store 1 5.0
    Name: Cost, dtype: float64
    >>> costs += 2
    >>> costs
    Store 1 24.5
    Store 2 4.5
    Store 1 7.0
    Name: Cost, dtype: float64

    costs = df['Cost']

进阶操作

  1. Merge
    Full Outer Join
    Inner Join
    Left Join
    Right Join
  2. apply
  3. group by
  4. agg
  5. astype
  6. cut
    s = pd.Series([168, 180, 174, 190, 170, 185, 179, 181, 175, 169, 182, 177, 180, 171])
    pd.cut(s, 3)
    pd.cut(s, 3, labels=['Small', 'Medium', 'Large'])

    cut( )

  7. pivot table

Date in DataFrame

  1. Timestampe
  2. period
  3. DatetimeINdex
  4. PeriodIndex
  5. to_datetime
  6. Timedelta
  7. date_range
  8. difference between date value
  9. resample
  10. asfreq - changing the frequency of the date

读取 csv 文件

import pandas as pd
pd.read_csv('student.csv')
  1. 读取csv

    >>> from pandas import Series, DataFrame
    >>> import pandas as pd
    >>> df_student = pd.read_csv('student.csv')
    >>> df_student
    name class marks age
    janice python 80 22
    alex python 95 21
    peter python 85 25
    ken java 75 28
    lawerance java 50 22

    pd.read_csv('student.csv')(例子一)

    df_student = pd.read_csv('student.csv', index_col=0, skiprows=1)

    pd.read_csv('student.csv')(例子二)

  2. 获取分数大于70的数据
    >>> df_student['marks'] > 70
    True
    True
    True
    True
    False
    Name: marks, dtype: bool

    方法一: df_student['marks'] > 70

    >>> df_student.where(df_student['marks']>70)
    name class marks age
    janice python 80.0 22.0
    alex python 95.0 21.0
    peter python 85.0 25.0
    ken java 75.0 28.0
    NaN NaN NaN NaN

    方法二: df_student.where(df_student['marks']>70)

    >>> df_student[df_student['marks'] > 70]
    name class marks age
    0 janice python 80 22
    1 alex python 95 21
    2 peter python 85 25
    3 ken java 75 28

    方法三: df_student[df_student['marks'] > 70]

  3. 获取class = 'python' 的数据,df.count( ) 是不会把 NaN数据计算在其中
    >>> df2 = df_student.where(df_student['class'] == 'python')
    >>> df2
    name class marks age
    0 janice python 80.0 22.0
    1 alex python 95.0 21.0
    2 peter python 85.0 25.0
    3 NaN NaN NaN NaN
    4 NaN NaN NaN NaN >>> df2 = df_student[df_student['class'] == 'python']
    >>> df2
    name class marks age
    0 janice python 80 22
    1 alex python 95 21
    2 peter python 85 25

    df_student.where( )例子

  4. 计算 class 的数目 e.g. count( )
    >>> df2['class'].count() #不会把 NaN也计算
    3 >>> df_student['class'].count() #会把 NaN也计算
    5

    df.count( )例子

  5. 删取NaN数据
    >>> df3 = df2.dropna()
    >>> df3
    name class marks age
    0 janice python 80.0 22.0
    1 alex python 95.0 21.0
    2 peter python 85.0 25.0

    df2.dropna()

  6. 获取age大于23 学生的数据
    >>> df_student
    name class marks age
    0 janice python 80 22
    1 alex python 95 21
    2 peter python 85 25
    3 ken java 75 28
    4 lawerance java 50 22 >>> df_student[df_student['age'] > 23]
    name class marks age
    2 peter python 85 25
    3 ken java 75 28 >>> df_student['age'] > 23
    0 False
    1 False
    2 True
    3 True
    4 False
    Name: age, dtype: bool >>> len(df_student[df_student['age'] > 23])
    2

    df_student[df_student['age'] > 23]

  7. 获取age大于23分数大于80分学生的数据
    >>> df_student
    name class marks age
    0 janice python 80 22
    1 alex python 95 21
    2 peter python 85 25
    3 ken java 75 28
    4 lawerance java 50 22
    >>> df_and = df_student[(df_student['age'] > 23) & (df_student['marks'] > 80)]
    >>> df_and
    name class marks age
    2 peter python 85 25

    df_student[(df_student['age'] > 23) & (df_student['marks'] > 80)]

  8. 获取age大于23分数大于80分学生的数据
    >>> df_student
    name class marks age
    0 janice python 80 22
    1 alex python 95 21
    2 peter python 85 25
    3 ken java 75 28
    4 lawerance java 50 22 >>> df_or = df_student[(df_student['age'] > 23) | (df_student['marks'] > 80)]
    >>> df_or
    name class marks age
    1 alex python 95 21
    2 peter python 85 25
    3 ken java 75 28

    df_student[(df_student['age'] > 23) | (df_student['marks'] > 80)]

  9. 重新定义index的数值 df.set_index( )
    >>> df_student = pd.read_csv('student.csv')
    >>> df_student
    name class marks age
    0 janice python 80 22
    1 alex python 95 21
    2 peter python 85 25
    3 ken java 75 28
    4 lawerance java 50 22 >>> df_student['order_id'] = df_student.index
    >>> df_student
    name class marks age order_id
    0 janice python 80 22 0
    1 alex python 95 21 1
    2 peter python 85 25 2
    3 ken java 75 28 3
    4 lawerance java 50 22 4 >>> df_student = df_student.set_index('class')
    >>> df_student
    name marks age order_id
    class
    python janice 80 22 0
    python alex 95 21 1
    python peter 85 25 2
    java ken 75 28 3
    java lawerance 50 22 4

    df_student.set_index( )例子

  10. 获取在 dataframe column 中唯一的数据
    >>> df_student = pd.read_csv('student.csv')
    >>> df_student['class'].unique()
    array(['python', 'java'], dtype=object)

    df.unique( )例子

python 的可视化 matplotlib

  1. plot

參考資料

Coursera: Introduction to Data Science in Python

Data Science (Chris Albon)

Data Science: GoodHart's Law | Goodhart's Law

Pandas文档Pandas中文文档

Python 数据科学系列 の Numpy、Series 和 DataFrame介绍的更多相关文章

  1. Python数据科学手册-Numpy入门

    通过Python有效导入.存储和操作内存数据的技巧 数据来源:文档.图像.声音.数值等等,将所有的数据简单的看做数字数组 非常有助于 理解和处理数据 不管数据是何种形式,第一步都是 将这些数据转换成 ...

  2. [python]-数据科学库Numpy学习

    一.Numpy简介: Python中用列表(list)保存一组值,可以用来当作数组使用,不过由于列表的元素可以是任何对象,因此列表中所保存的是对象的指针.这样为了保存一个简单的[1,2,3],需要有3 ...

  3. Python数据科学手册-Numpy的结构化数组

    结构化数组 和 记录数组 为复合的.异构的数据提供了非常有效的存储 (一般使用pandas 的 DataFrame来实现) 传入的dtpye 使用 Numpy数据类型 Character Descri ...

  4. Python数据科学手册-Numpy数组的排序

    1)  Numpy中的快速排序: np.sort  和 np.argsort np.sort 是快速排序,算法复杂度 O[ N log N] ,也可以选择归并排序和堆排序 如果不想修改原始输入数组,返 ...

  5. Python数据科学手册-Numpy数组的计算:比较、掩码和布尔逻辑,花哨的索引

    Numpy的通用函数可以用来替代循环, 快速实现数组的逐元素的 运算 同样,使用其他通用函数实现数组的逐元素的 比较 < > 这些运算结果 是一个布尔数据类型的数组. 有6种标准的比较操作 ...

  6. Python数据科学手册-Numpy数组的计算,通用函数

    Python的默认实现(CPython)处理某些操作非常慢,因为动态性和解释性, CPython 在每次循环必须左数据类型的检查和函数的调度..在编译是进行这样的操作.就会加快执行速度. 通用函数介绍 ...

  7. Python数据科学手册-Numpy数组的计算:广播

    广播可以简单理解为用于不同大小数组的二元通用函数(加减乘等)的一组规则 二元运算符是对相应元素逐个计算 广播允许这些二元运算符可以用于不同大小的数组 更高维度的数组 更复杂的情况,对俩个数组的同时广播 ...

  8. python书籍推荐:Python数据科学手册

    所属网站分类: 资源下载 > python电子书 作者:today 链接:http://www.pythonheidong.com/blog/article/448/ 来源:python黑洞网 ...

  9. 干货!小白入门Python数据科学全教程

    前言 本文讲解了从零开始学习Python数据科学的全过程,涵盖各种工具和方法 你将会学习到如何使用python做基本的数据分析 你还可以了解机器学习算法的原理和使用 说明 先说一段题外话.我是一名数据 ...

随机推荐

  1. 简单理解OpenGL模型视图变换

    前几天学习了OpenGL的绘图原理(其实就是坐标的不停变换变换),看到网上有个比较好的例程,于是学习了下,并在自己感兴趣的部分做了注释. 首先通过glMatrixMode(GL_MODELVIEW)设 ...

  2. [Maven实战](7)坐标

    1. 简单介绍 maven的世界中拥有数量很巨大的构件,也就是平时用的一些jar,war等文件. 在maven为这些构件引入坐标概念之前,我们无法使用不论什么一种方式来唯一标识全部这些构件. 因此,当 ...

  3. 设置Eclipse的workspace路径

    首次启动Eclipse/MyEclipse时, 会弹出"Workspace Launcher"对话框, 提示设置Workspace路径. 设定好路径后, 若勾选了"Use ...

  4. ZOJ ACM 1204 (JAVA)

    毕业好几年了,对算法还是比較有兴趣,所以想又一次開始做ACM题.俺做题比較任意,一般先挑通过率高的题来做. 第1204题,详细描写叙述请參考,ZOJ ACM 1204 1)难度分析 这个题目,基本的难 ...

  5. 在Azure Container Service创建Kubernetes(k8s)群集运行ASP.NET Core跨平台应用程序

    引子 在此前的一篇文章中,我介绍了如何在本地docker环境中运行ASP.NET Core跨平台应用程序(http://www.cnblogs.com/chenxizhang/p/7148657.ht ...

  6. 自学Python5.1-模块简介

    模块简介 在C语言中如果要引用sqrt这个函数,必须用语句"#include<math.h>"引入math.h这个头文件,否则是无法正常进行调用的.那么在Python中 ...

  7. Effective Java 第三版——7. 消除过期的对象引用

    Tips <Effective Java, Third Edition>一书英文版已经出版,这本书的第二版想必很多人都读过,号称Java四大名著之一,不过第二版2009年出版,到现在已经将 ...

  8. python filter map reduce

    filter(function, iterable): Construct a list from those elements of iterable for which function retu ...

  9. Java之路上,让我们Stand Up Again

    在开始之前,先发表一下个人想法吧. 在读书的时候每天忙的不可开交,也就没有了所谓的自由,突然参加工作,传统的朝八晚五,标准的八小时工作制,每天都是两点一线,工作中涉及商业机密,公司的东西也不能带回家, ...

  10. 《编程珠玑(第2版)》【PDF】下载

    <编程珠玑(第2版)>[PDF]下载链接: https://u253469.pipipan.com/fs/253469-230382225 内容简介 书的内容围绕程序设计人员面对的一系列实 ...