51nod 1203 jzplcm
长度为N的正整数序列S,有Q次询问,每次询问一段区间内所有数的lcm(即最小公倍数)。由于答案可能很大,输出答案Mod 10^9 + 7。
第1行:两个整数,N, Q,中间用空格分隔,N为数列长度,Q为询问数量。(2 <= N, Q <= 50000)
第2 - N + 1行:每行1个整数,对应数列中的元素(1 <= S[i] <= 50000)
第N + 2 - N + Q + 1行:每行2个数,l, r,表示询问下标i在[l, r]范围内的S[i]的最小公倍数。(1 <= l <= r <= N)
输出共Q行,对应询问区间的最小公倍数Mod 10^9 + 7。
3 3
123
234
345
1 2
2 3
1 3
9594
26910
1103310 由于ai很小可以用各种方法乱搞,但这是一道论文题,原题的ai有1e9;
我们考虑这种有关lcm和gcd的题一种常用的处理方法就是分解质因数,这个题我们相当于是要求每个质因子的幂的最大值;
这个就很皮了,因为区间中不同质因子的数量是可能很多的,一个个枚举质因子肯定是假的;
我们可以考虑干这样一个骚操作,我们分解质因数的时候,我们就真的把他分解,比如说这个数有p^q,
那么我们就拆为p^1,p^2,p^3,...,p^q,这么多个数,然后每个数的权值为p,然后问题转化为区间中不同的数的乘积;
这样显然是对的,因为我们假设p这个质因子的最大次幂为q,那么会有p这个数会乘q次,因为有p^1,p^2,p^3...p^q每次都乘了p,满足lcm的定义;
于是我们发现这是一个经典的问题,对于每个数我们肯定是在他第一次出现在区间中的时候计算贡献,那么我们用类似HH的项链和采花的套路,用一个la[i],表示i位置上的数上一次出现的位置;
于是我们变为了询问[l,r]中la[i]<l的数的乘积,我们把询问按照右端点排序用树状数组维护前缀乘积即可,具体实现方法和采花类似;
论文链接里面还有各种做法,以及题目的分析过程
//MADE BY QT666
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<vector>
using namespace std;
typedef long long ll;
const int N=300050;
const int Mod=1e9+7;
int n,q,la[N],prime[N],tot,vis[N],a[N],b[N*20],v[N*20],tt,st[N],ed[N];
vector<int> p[N];
void pre(){
for(int i=2;i<=100000;i++){
if(!vis[i]) prime[++tot]=i;
for(int j=i;j<=100000;j+=i) vis[j]=1;
}
for(int i=1;i<=tot;i++){
for(int j=prime[i];j<=100000;j+=prime[i]) p[j].push_back(prime[i]);
}
}
struct data{
int l,r,id;
}Q[N];
int last[N];
bool cmp(const data &a,const data &b){
return a.r<b.r;
}
ll tr[N*20],ans[N];
int lowbit(int x){return x&-x;}
void update(int x,ll v){
if(x==0) return;
for(int i=x;i<=tt;i+=lowbit(i)) (tr[i]*=v)%=Mod;
}
ll query(int x){
ll ret=1;
for(int i=x;i;i-=lowbit(i)){
(ret*=1ll*tr[i])%=Mod;
}
return ret;
}
ll qpow(ll x,ll y){
ll ret=1;
while(y){
if(y&1) (ret*=x)%=Mod;
(x*=x)%=Mod;y>>=1;
}
return ret;
}
int main(){
scanf("%d%d",&n,&q);pre();
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
int x=a[i];st[i]=tt+1;
for(int j=0;j<p[a[i]].size();j++){
int y=p[a[i]][j],z=p[a[i]][j];
while(x%y==0){
b[++tt]=z;v[tt]=y;x/=y;z*=y;
}
}
ed[i]=tt;
}
for(int i=1;i<=q;i++){
scanf("%d%d",&Q[i].l,&Q[i].r);
Q[i].l=st[Q[i].l],Q[i].r=ed[Q[i].r],Q[i].id=i;
}
for(int i=1;i<=tt;i++) la[i]=last[b[i]],last[b[i]]=i;
sort(Q+1,Q+1+q,cmp);int l=1;
tr[0]=1;
for(int i=1;i<=tt;i++) tr[i]=1;
for(int i=1;i<=q;i++){
while(l<=Q[i].r){
update(la[l],qpow(v[l],Mod-2)),update(l,v[l]);l++;
}
ans[Q[i].id]=query(Q[i].r)*qpow(query(Q[i].l-1),Mod-2)%Mod;
}
for(int i=1;i<=q;i++) printf("%lld\n",ans[i]);
return 0;
}
51nod 1203 jzplcm的更多相关文章
- 2019.01.22 51nod 1203 JZPLCM(线段树+链表)
传送门 一道很有意思的题. 题意简述:给一个数列,多次询问区间的lcmlcmlcm,答案对1e9+71e9+71e9+7取模. 思路:首先考虑到一个区间的lcmlcmlcm就是其中所有出现过的素数的最 ...
- 51 nod 1203 JZPLCM
原题链接 长度为N的正整数序列S,有Q次询问,每次询问一段区间内所有数的lcm(即最小公倍数).由于答案可能很大,输出答案Mod 10^9 + 7. 例如:2 3 4 5,询问[1,3]区间的最小 ...
- 51Nod1203 2012集训队答辩 JZPLCM
A1339. JZPLCM(顾昱洲) 时间限制:3.0s 内存限制:256.0MB 试题来源 2012中国国家集训队命题答辩 问题描述 给定一长度为n的正整数序列a,有q次询问,每次询问一段区 ...
- 【51Nod 1244】莫比乌斯函数之和
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1244 模板题... 杜教筛和基于质因子分解的筛法都写了一下模板. 杜教筛 ...
- 51Nod 1268 和为K的组合
51Nod 1268 和为K的组合 1268 和为K的组合 基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题 给出N个正整数组成的数组A,求能否从中选出若干个,使 ...
- 51Nod 1428 活动安排问题
51Nod 1428 活动安排问题 Link: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1428 1428 活 ...
- 51Nod 1278 相离的圆
51Nod 1278 相离的圆 Link: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1278 1278 相离的圆 基 ...
- 【51Nod 1501】【算法马拉松 19D】石头剪刀布威力加强版
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1501 dp求出环状不连续的前缀和,剩下东西都可以算出来,比较繁琐. 时间 ...
- 【51Nod 1622】【算法马拉松 19C】集合对
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1622 简单题..直接暴力快速幂 #include<cstdio&g ...
随机推荐
- Spark SQL中的几种join
1.小表对大表(broadcast join) 将小表的数据分发到每个节点上,供大表使用.executor存储小表的全部数据,一定程度上牺牲了空间,换取shuffle操作大量的耗时,这在SparkSQ ...
- Java关键字(一) 修饰符private、protected、public和default的作用域
我们经常用着四种修饰符去修饰变量.方法和类,但是这四种的作用域都一样吗? 其中private和public可能是最多人知道的,但是protected和default可能就不知道其具体的作用域是哪些范围 ...
- 一些内存模型、并发、netty知识点的记录
happens-before:描述内存可见性as-if-serial:无论怎么重排序,程序的运行结果不会改变 ReentrantLock依赖了队列同步器AQS,其实现方式是volatile变量的读写操 ...
- .NET Core 快速入门教程
.NET Core 快速学习.入门系列教程.这个入门系列教程主要跟大家聊聊.NET Core的前世今生,以及Windows.Linux(CentOS.Ubuntu)基础开发环境的搭建.第一个.NET ...
- 响应式框架Bootstrap栅格系统
<!DOCTYPE html><html><head lang="en"> <meta charset="UTF-8&qu ...
- 【Win 10 应用开发】MIDI 音乐合成——乐理篇
针对 MIDI 音乐的 API ,其实在 Win 8.1 的时候就出现.在UWP中采用了新的驱动模式,MIDI 消息传递更加高效. 首先得说明的是,UWP 的 MIDI 相关 API 不是针对 MID ...
- js模拟静态方法
//模拟静态 var Animal = function(name){ this.name = name; Animal.instanceCounter ++; }; Animal.instanceC ...
- 《Linux调优工具oprofile的演示分析》
根据CPU架构oprofile采样的触发有两种模式:1) NMI模式: 利用处理器的performance counter功能, 指定counter的类型type和累进数量count. 比如 type ...
- configure:cannot guess build type; you must specify one
换了msys2后.编译xerces-c-2.8.0../runConfigure -pmingw-msys -cgcc -xg++ -s -P/opt/xercesc-2.8.0 后遇到如标题所看到的 ...
- Cairo-Dock 系统关机无效
正文 背景 Cairo-Dock 设置为开机自己主动启动后.系统菜单条里的关机选项就无效了,命令行里能够使用命令关机. 搜索过程 这次google找到的结果让我非常失望,于是仅仅好百度了. 在百度贴吧 ...