dplyr 0.4.0

January 9, 2015 in Uncategorized

I’m very pleased to announce that dplyr 0.4.0 is now available from CRAN. Get the latest version by running:

install.packages("dplyr")

dplyr 0.4.0 includes over 80 minor improvements and bug fixes, which are described in detail in the release notes. Here I wanted to draw your attention to two areas that have particularly improved since dplyr 0.3, two-table verbs and data frame support.

Two table verbs

dplyr now has full support for all two-table verbs provided by SQL:

  • Mutating joins, which add new variables to one table from matching rows in another: inner_join()left_join()right_join()full_join(). (Support for non-equi joins is planned for dplyr 0.5.0.)
  • Filtering joins, which filter observations from one table based on whether or not they match an observation in the other table: semi_join()anti_join().
  • Set operations, which combine the observations in two data sets as if they were set elements: intersect()union()setdiff().

Together, these verbs should allow you to solve 95% of data manipulation problems that involve multiple tables. If any of the concepts are unfamiliar to you, I highly recommend reading the two-table vignette (and if you still don’t understand, please let me know so I can make it better.)

Data frames

dplyr wraps data frames in a tbl_df class. These objects are structured in exactly the same way as regular data frames, but their behaviour has been tweaked a little to make them easier to work with. The new data_frames vignette describes how dplyr works with data frames in general, and below I highlight some of the features new in 0.4.0.

PRINTING

The biggest difference is printing: print.tbl_df() doesn’t try and print 10,000 rows! Printing got a lot of love in dplyr 0.4 and now:

  • All print() method methods invisibly return their input so you can interleaveprint() statements into a pipeline to see interim results.
  • If you’ve managed to produce a 0-row data frame, dplyr won’t try to print the data, but will tell you the column names and types:
    data_frame(x = numeric(), y = character())
    #> Source: local data frame [0 x 2]
    #>
    #> Variables not shown: x (dbl), y (chr)
  • dplyr never prints row names since no dplyr method is guaranteed to preserve them:
    df <- data.frame(x = c(a = 1, b = 2, c = 3))
    df
    #> x
    #> a 1
    #> b 2
    #> c 3
    df %>% tbl_df()
    #> Source: local data frame [3 x 1]
    #>
    #> x
    #> 1 1
    #> 2 2
    #> 3 3

    I don’t think using row names is a good idea because it violates one of the principles of tidy data: every variable should be stored in the same way.

    To make life a bit easier if you do have row names, you can use the newadd_rownames() to turn your row names into a proper variable:

    df %>%
    add_rownames()
    #> rowname x
    #> 1 a 1
    #> 2 b 2
    #> 3 c 3

    (But you’re better off never creating them in the first place.)

  • options(dplyr.print_max) is now 20, so dplyr will never print more than 20 rows of data (previously it was 100). The best way to see more rows of data is to use View().

COERCING LISTS TO DATA FRAMES

When you have a list of vectors of equal length that you want to turn into a data frame, dplyr provides as_data_frame() as a simple alternative to as.data.frame().as_data_frame() is considerably faster than as.data.frame() because it does much less:

l <- replicate(26, sample(100), simplify = FALSE)
names(l) <- letters
microbenchmark::microbenchmark(
as_data_frame(l),
as.data.frame(l)
)
#> Unit: microseconds
#> expr min lq median uq max neval
#> as_data_frame(l) 101.856 112.0615 124.855 143.0965 254.193 100
#> as.data.frame(l) 1402.075 1466.6365 1511.644 1635.1205 3007.299 100

It’s difficult to precisely describe what as.data.frame(x) does, but it’s similar todo.call(cbind, lapply(x, data.frame)) – it coerces each component to a data frame and then cbind()s them all together.

The speed of as.data.frame() is not usually a bottleneck in interactive use, but can be a problem when combining thousands of lists into one tidy data frame (this is common when working with data stored in json or xml).

BINDING ROWS AND COLUMNS

dplyr now provides bind_rows() and bind_cols() for binding data frames together. Compared to rbind() and cbind(), the functions:

  • Accept either individual data frames, or a list of data frames:

    a <- data_frame(x = 1:5)
    b <- data_frame(x = 6:10) bind_rows(a, b)
    #> Source: local data frame [10 x 1]
    #>
    #> x
    #> 1 1
    #> 2 2
    #> 3 3
    #> 4 4
    #> 5 5
    #> .. .
    bind_rows(list(a, b))
    #> Source: local data frame [10 x 1]
    #>
    #> x
    #> 1 1
    #> 2 2
    #> 3 3
    #> 4 4
    #> 5 5
    #> .. .

    If x is a list of data frames, bind_rows(x) is equivalent to do.call(rbind, x).

  • Are much faster:
    dfs <- replicate(100, data_frame(x = runif(100)), simplify = FALSE)
    microbenchmark::microbenchmark(
    do.call("rbind", dfs),
    bind_rows(dfs)
    )
    #> Unit: microseconds
    #> expr min lq median uq max
    #> do.call("rbind", dfs) 5344.660 6605.3805 6964.236 7693.8465 43457.061
    #> bind_rows(dfs) 240.342 262.0845 317.582 346.6465 2345.832
    #> neval
    #> 100
    #> 100

(Generally you should avoid bind_cols() in favour of a join; otherwise check carefully that the rows are in a compatible order).

LIST-VARIABLES

Data frames are usually made up of a list of atomic vectors that all have the same length. However, it’s also possible to have a variable that’s a list, which I call a list-variable. Because of data.frame()s complex coercion rules, the easiest way to create a data frame containing a list-column is with data_frame():

data_frame(x = 1, y = list(1), z = list(list(1:5, "a", "b")))
#> Source: local data frame [1 x 3]
#>
#> x y z
#> 1 1 <dbl[1]> <list[3]>

Note how list-variables are printed: a list-variable could contain a lot of data, so dplyr only shows a brief summary of the contents. List-variables are useful for:

  • Working with summary functions that return more than one value:

    qs <- mtcars %>%
    group_by(cyl) %>%
    summarise(y = list(quantile(mpg))) # Unnest input to collpase into rows
    qs %>% tidyr::unnest(y)
    #> Source: local data frame [15 x 2]
    #>
    #> cyl y
    #> 1 4 21.4
    #> 2 4 22.8
    #> 3 4 26.0
    #> 4 4 30.4
    #> 5 4 33.9
    #> .. ... ... # To extract individual elements into columns, wrap the result in rowwise()
    # then use summarise()
    qs %>%
    rowwise() %>%
    summarise(q25 = y[2], q75 = y[4])
    #> Source: local data frame [3 x 2]
    #>
    #> q25 q75
    #> 1 22.80 30.40
    #> 2 18.65 21.00
    #> 3 14.40 16.25
  • Keeping associated data frames and models together:
    by_cyl <- split(mtcars, mtcars$cyl)
    models <- lapply(by_cyl, lm, formula = mpg ~ wt) data_frame(cyl = c(4, 6, 8), data = by_cyl, model = models)
    #> Source: local data frame [3 x 3]
    #>
    #> cyl data model
    #> 1 4 <S3:data.frame> <S3:lm>
    #> 2 6 <S3:data.frame> <S3:lm>
    #> 3 8 <S3:data.frame> <S3:lm>

dplyr’s support for list-variables continues to mature. In 0.4.0, you can join and row bind list-variables and you can create them in summarise and mutate.

My vision of list-variables is still partial and incomplete, but I’m convinced that they will make pipeable APIs for modelling much eaiser. See the draft lowliner package for more explorations in this direction.

Bonus

My colleague, Garrett, helped me make a cheat sheet that summarizes the data wrangling features of dplyr 0.4.0. You can download it from RStudio’s new gallery of R cheat sheets.

The dplyr package has been updated with new data manipulation commands for filters, joins and set operations.(转)的更多相关文章

  1. Data Manipulation with dplyr in R

    目录 select The filter and arrange verbs arrange filter Filtering and arranging Mutate The count verb ...

  2. Accessing data in Hadoop using dplyr and SQL

    If your primary objective is to query your data in Hadoop to browse, manipulate, and extract it into ...

  3. HBase:Shell

    HBase shell commands As told in HBase introduction, HBase provides Extensible jruby-based (JIRB) she ...

  4. OCP—051试题

    FROM: http://blog.itpub.net/26736162/viewspace-1252569/?page=2 http://blog.csdn.net/elearnings/artic ...

  5. OCP考试062题库出现大量新题-19

    choose three Which three statements are true about Oracle Data Pump? A) Oracle Data Pump export and ...

  6. 数据处理包plyr和dplyr包的整理

    以下内容主要参照 Introducing dplyr 和 dplyr 包自带的简介 (Introduction to dplyr), 复制了原文对应代码, 并夹杂了个人理解和观点 (多附于括号内). ...

  7. R语言扩展包dplyr笔记

    引言 2014年刚到, 就在 Feedly 订阅里看到 RStudio Blog 介绍 dplyr 包已发布 (Introducing dplyr), 此包将原本 plyr 包中的 ddply() 等 ...

  8. R Tidyverse dplyr包学习笔记2

    Tidyverse 学习笔记 1.gapminder 我理解的gapminder应该是一个内置的数据集 加载之后使用 > # Load the gapminder package > li ...

  9. SSISDB7:查看当前正在运行的Package

    在项目组中做ETL开发时,经常会被问到:“现在ETL跑到哪一个Package了?” 为了缩短ETL运行的时间,在ETL的设计上,经常会使用并发执行模式:Task 并发执行,Package并发执行.对于 ...

随机推荐

  1. SQL SERVER 远程备份DB

    --检查sqlserver所在服务的运行账号是否有权限访问共享文件夹,没有的话右键添加写权限 --开启权限sp_configure 'show advanced options', 1;gorecon ...

  2. maven私服搭建nexus介绍(二)

    1.各个仓库介绍 Hosted:宿主仓库 主要放本公司开发的SNAPSHOTS测试版本,RELEASES正式发行版.合作公司第三方的jar包. Proxy:代理仓库 代理中央仓库:代理Apache下测 ...

  3. Spring配置数据源的几种方法

    一:数据源的配置1.通过JNDI配置数据源    1.在tomcat context.xml中配置数据源        <Resource name="jdbc/ds" au ...

  4. 傻瓜式使用AutoFac

    定义一个接口: using System; using System.Collections.Generic; using System.Linq; using System.Web; namespa ...

  5. html字体问题

    正如咱们在上一章中解说的那样,HTML元素使页面规划者能够对文档的构造进行符号.HTML标准列出了浏览器应该怎么显现这些元素的攻略.例如,您能够合理地保证强元素的内容将显现粗体.此外,您能够非常信赖大 ...

  6. ob缓存

    ob的基本原则:如果ob缓存打开,则echo的数据首先放在ob缓存.如果是header信息,直接放在程序缓存.当页面执行到最后,会把ob缓存的数据放到程序缓存,然后依次返回给浏览器.下面我说说ob的基 ...

  7. Angularjs快速入门(一)

    这系列是看<用angularjs开发下一代web应用>的笔记. angular也接触几个月,总觉得不甚明白,写起来总是不那么如意.希望这本书看完了可以改变现在的状况.好了废话不多说开始: ...

  8. 线下市场,选择微信小程序从未显得如此重要

    2017 年 1 月 9 日,小程序正式上线,到今日,3 月 8 号,这个新产品面世刚好满两个月.小程序刚推出便受到全球关注,腾讯股价当天即创逾一个月高位,但关注度先是急速上涨,不久便迅速降温,甚至在 ...

  9. MYSQL设置远程账户登陆总结

    为了给MYSQL用户设置远程连接权限,经历的种种错误总结 ERROR 2003 (HY00 原因是MySQL考虑到安全因素,默认配置只让从本地登录 打开 /etc/mysql/my.cnf 文件,找到 ...

  10. String,StringBuilder,StringBuffer的对比测试

    public class TestString { private static final int COUNT = 10000000; public static void main(String ...