java8之stream


@Before
public void init() {
random = new Random();
stuList = new ArrayList<Student>() {
{
for (int i = 0; i < 100; i++) {
add(new Student("student" + i, random.nextInt(50) + 50));
}
}
};
} public class Student {
private String name;
private Integer score;
//-----getters and setters-----
} //1列出班上超过85分的学生姓名,并按照分数降序输出用户名字
@Test
public void test1() {
List<String> studentList = stuList.stream()
.filter(x->x.getScore()>85)
.sorted(Comparator.comparing(Student::getScore).reversed())
.map(Student::getName)
.collect(Collectors.toList());
System.out.println(studentList);
}
@Test
public void test1(){
Stream<String> stream = Stream.generate(()->"user").limit(20);
stream.forEach(System.out::println);
stream.forEach(System.out::println);
}


public boolean filter(Student s) {
System.out.println("begin compare");
return s.getScore() > 85;
} @Test
public void test() {
Stream<Student> stream = Stream.of(stuArr).filter(this::filter);
System.out.println("split-------------------------------------");
List<Student> studentList = stream.collect(toList());
}


List<String> wordList; @Before
public void init() {
wordList = new ArrayList<String>() {
{
add("a");
add("b");
add("c");
add("d");
add("e");
add("f");
add("g");
}
};
}
/**
* 延迟执行特性,在聚合操作之前都可以添加相应元素
*/
@Test
public void test() {
Stream<String> words = wordList.stream();
wordList.add("END");
long n = words.distinct().count();
System.out.println(n);
}
/**
* 延迟执行特性,会产生干扰
* nullPointException
*/
@Test
public void test2(){
Stream<String> words1 = wordList.stream();
words1.forEach(s -> {
System.out.println("s->"+s);
if (s.length() < 4) {
System.out.println("select->"+s);
wordList.remove(s);
System.out.println(wordList);
}
});
}


/**
* 通过数组创建流
*/
@Test
public void testArrayStream(){
//1.通过Arrays.stream
//1.1基本类型
int[] arr = new int[]{1,2,34,5};
IntStream intStream = Arrays.stream(arr);
//1.2引用类型
Student[] studentArr = new Student[]{new Student("s1",29),new Student("s2",27)};
Stream<Student> studentStream = Arrays.stream(studentArr);
//2.通过Stream.of
Stream<Integer> stream1 = Stream.of(1,2,34,5,65);
//注意生成的是int[]的流
Stream<int[]> stream2 = Stream.of(arr,arr);
stream2.forEach(System.out::println);
}
/**
* 通过集合创建流
*/
@Test
public void testCollectionStream(){
List<String> strs = Arrays.asList("11212","dfd","2323","dfhgf");
//创建普通流
Stream<String> stream = strs.stream();
//创建并行流
Stream<String> stream1 = strs.parallelStream();
}
@Test
public void testEmptyStream(){
//创建一个空的stream
Stream<Integer> stream = Stream.empty();
}
@Test
public void testUnlimitStream(){
//创建无限流,通过limit提取指定大小
Stream.generate(()->"number"+new Random().nextInt()).limit(100).forEach(System.out::println);
Stream.generate(()->new Student("name",10)).limit(20).forEach(System.out::println);
}
/**
* 产生规律的数据
*/
@Test
public void testUnlimitStream1(){
Stream.iterate(0,x->x+1).limit(10).forEach(System.out::println);
Stream.iterate(0,x->x).limit(10).forEach(System.out::println);
//Stream.iterate(0,x->x).limit(10).forEach(System.out::println);与如下代码意思是一样的
Stream.iterate(0, UnaryOperator.identity()).limit(10).forEach(System.out::println);
}
/**
* map把一种类型的流转换为另外一种类型的流
* 将String数组中字母转换为大写
*/
@Test
public void testMap() {
String[] arr = new String[]{"yes", "YES", "no", "NO"};
Arrays.stream(arr).map(x -> x.toLowerCase()).forEach(System.out::println);
}
@Test
public void testFilter(){
Integer[] arr = new Integer[]{1,2,3,4,5,6,7,8,9,10};
Arrays.stream(arr).filter(x->x>3&&x<8).forEach(System.out::println);
}
/**
* flapMap:拆解流
*/
@Test
public void testFlapMap1() {
String[] arr1 = {"a", "b", "c", "d"};
String[] arr2 = {"e", "f", "c", "d"};
String[] arr3 = {"h", "j", "c", "d"};
// Stream.of(arr1, arr2, arr3).flatMap(x -> Arrays.stream(x)).forEach(System.out::println);
Stream.of(arr1, arr2, arr3).flatMap(Arrays::stream).forEach(System.out::println);
}
String[] arr1 = {"abc","a","bc","abcd"};
/**
* Comparator.comparing是一个键提取的功能
* 以下两个语句表示相同意义
*/
@Test
public void testSorted1_(){
/**
* 按照字符长度排序
*/
Arrays.stream(arr1).sorted((x,y)->{
if (x.length()>y.length())
return 1;
else if (x.length()<y.length())
return -1;
else
return 0;
}).forEach(System.out::println);
Arrays.stream(arr1).sorted(Comparator.comparing(String::length)).forEach(System.out::println);
} /**
* 倒序
* reversed(),java8泛型推导的问题,所以如果comparing里面是非方法引用的lambda表达式就没办法直接使用reversed()
* Comparator.reverseOrder():也是用于翻转顺序,用于比较对象(Stream里面的类型必须是可比较的)
* Comparator. naturalOrder():返回一个自然排序比较器,用于比较对象(Stream里面的类型必须是可比较的)
*/
@Test
public void testSorted2_(){
Arrays.stream(arr1).sorted(Comparator.comparing(String::length).reversed()).forEach(System.out::println);
Arrays.stream(arr1).sorted(Comparator.reverseOrder()).forEach(System.out::println);
Arrays.stream(arr1).sorted(Comparator.naturalOrder()).forEach(System.out::println);
} /**
* thenComparing
* 先按照首字母排序
* 之后按照String的长度排序
*/
@Test
public void testSorted3_(){
Arrays.stream(arr1).sorted(Comparator.comparing(this::com1).thenComparing(String::length)).forEach(System.out::println);
}
public char com1(String x){
return x.charAt(0);
}
@Before
public void init(){
arr1 = new String[]{"a","b","c","d"};
arr2 = new String[]{"d","e","f","g"};
arr3 = new String[]{"i","j","k","l"};
}
/**
* limit,限制从流中获得前n个数据
*/
@Test
public void testLimit(){
Stream.iterate(1,x->x+2).limit(10).forEach(System.out::println);
} /**
* skip,跳过前n个数据
*/
@Test
public void testSkip(){
// Stream.of(arr1).skip(2).limit(2).forEach(System.out::println);
Stream.iterate(1,x->x+2).skip(1).limit(5).forEach(System.out::println);
} /**
* 可以把两个stream合并成一个stream(合并的stream类型必须相同)
* 只能两两合并
*/
@Test
public void testConcat(){
Stream<String> stream1 = Stream.of(arr1);
Stream<String> stream2 = Stream.of(arr2);
Stream.concat(stream1,stream2).distinct().forEach(System.out::println);
}
@Before
public void init(){
arr = new String[]{"b","ab","abc","abcd","abcde"};
} /**
* max、min
* 最大最小值
*/
@Test
public void testMaxAndMin(){
Stream.of(arr).max(Comparator.comparing(String::length)).ifPresent(System.out::println);
Stream.of(arr).min(Comparator.comparing(String::length)).ifPresent(System.out::println);
} /**
* count
* 计算数量
*/
@Test
public void testCount(){
long count = Stream.of(arr).count();
System.out.println(count);
} /**
* findFirst
* 查找第一个
*/
@Test
public void testFindFirst(){
String str = Stream.of(arr).parallel().filter(x->x.length()>3).findFirst().orElse("noghing");
System.out.println(str);
} /**
* findAny
* 找到所有匹配的元素
* 对并行流十分有效
* 只要在任何片段发现了第一个匹配元素就会结束整个运算
*/
@Test
public void testFindAny(){
Optional<String> optional = Stream.of(arr).parallel().filter(x->x.length()>3).findAny();
optional.ifPresent(System.out::println);
} /**
* anyMatch
* 是否含有匹配元素
*/
@Test
public void testAnyMatch(){
Boolean aBoolean = Stream.of(arr).anyMatch(x->x.startsWith("a"));
System.out.println(aBoolean);
} @Test
public void testStream1() {
Optional<Integer> optional = Stream.of(1,2,3).filter(x->x>1).reduce((x,y)->x+y);
System.out.println(optional.get());
}
@Test
public void testOptional() {
List<String> list = new ArrayList<String>() {
{
add("user1");
add("user2");
}
};
Optional<String> opt = Optional.of("andy with u");
opt.ifPresent(list::add);
list.forEach(System.out::println);
}
@Test
public void testOptional2() {
Integer[] arr = new Integer[]{4,5,6,7,8,9};
Integer result = Stream.of(arr).filter(x->x>9).max(Comparator.naturalOrder()).orElse(-1);
System.out.println(result);
Integer result1 = Stream.of(arr).filter(x->x>9).max(Comparator.naturalOrder()).orElseGet(()->-1);
System.out.println(result1);
Integer result2 = Stream.of(arr).filter(x->x>9).max(Comparator.naturalOrder()).orElseThrow(RuntimeException::new);
System.out.println(result2);
}
@Test
public void testStream1() {
Optional<Student> studentOptional = Optional.of(new Student("user1",21));
Optional<String> optionalStr = studentOptional.map(Student::getName);
System.out.println(optionalStr.get());
} public static Optional<Double> inverse(Double x) {
return x == 0 ? Optional.empty() : Optional.of(1 / x);
} public static Optional<Double> squareRoot(Double x) {
return x < 0 ? Optional.empty() : Optional.of(Math.sqrt(x));
} /**
* Optional的迭代
*/
@Test
public void testStream2() {
double x = 4d;
Optional<Double> result1 = inverse(x).flatMap(StreamTest7::squareRoot);
result1.ifPresent(System.out::println);
Optional<Double> result2 = Optional.of(4.0).flatMap(StreamTest7::inverse).flatMap(StreamTest7::squareRoot);
result2.ifPresent(System.out::println);
}
Student[] students;
@Before
public void init(){
students = new Student[100];
for (int i=0;i<30;i++){
Student student = new Student("user",i);
students[i] = student;
}
for (int i=30;i<60;i++){
Student student = new Student("user"+i,i);
students[i] = student;
}
for (int i=60;i<100;i++){
Student student = new Student("user"+i,i);
students[i] = student;
} }
@Test
public void testCollect1(){
/**
* 生成List
*/
List<Student> list = Arrays.stream(students).collect(toList());
list.forEach((x)-> System.out.println(x));
/**
* 生成Set
*/
Set<Student> set = Arrays.stream(students).collect(toSet());
set.forEach((x)-> System.out.println(x));
/**
* 如果包含相同的key,则需要提供第三个参数,否则报错
*/
Map<String,Integer> map = Arrays.stream(students).collect(toMap(Student::getName,Student::getScore,(s,a)->s+a));
map.forEach((x,y)-> System.out.println(x+"->"+y));
} /**
* 生成数组
*/
@Test
public void testCollect2(){
Student[] s = Arrays.stream(students).toArray(Student[]::new);
for (int i=0;i<s.length;i++)
System.out.println(s[i]);
} /**
* 指定生成的类型
*/
@Test
public void testCollect3(){
HashSet<Student> s = Arrays.stream(students).collect(toCollection(HashSet::new));
s.forEach(System.out::println);
} /**
* 统计
*/
@Test
public void testCollect4(){
IntSummaryStatistics summaryStatistics = Arrays.stream(students).collect(Collectors.summarizingInt(Student::getScore));
System.out.println("getAverage->"+summaryStatistics.getAverage());
System.out.println("getMax->"+summaryStatistics.getMax());
System.out.println("getMin->"+summaryStatistics.getMin());
System.out.println("getCount->"+summaryStatistics.getCount());
System.out.println("getSum->"+summaryStatistics.getSum());
}
Student[] students;
@Before
public void init(){
students = new Student[100];
for (int i=0;i<30;i++){
Student student = new Student("user1",i);
students[i] = student;
}
for (int i=30;i<60;i++){
Student student = new Student("user2",i);
students[i] = student;
}
for (int i=60;i<100;i++){
Student student = new Student("user3",i);
students[i] = student;
} }
@Test
public void testGroupBy1(){
Map<String,List<Student>> map = Arrays.stream(students).collect(groupingBy(Student::getName));
map.forEach((x,y)-> System.out.println(x+"->"+y));
} /**
* 如果只有两类,使用partitioningBy会比groupingBy更有效率
*/
@Test
public void testPartitioningBy(){
Map<Boolean,List<Student>> map = Arrays.stream(students).collect(partitioningBy(x->x.getScore()>50));
map.forEach((x,y)-> System.out.println(x+"->"+y));
} /**
* downstream指定类型
*/
@Test
public void testGroupBy2(){
Map<String,Set<Student>> map = Arrays.stream(students).collect(groupingBy(Student::getName,toSet()));
map.forEach((x,y)-> System.out.println(x+"->"+y));
} /**
* downstream 聚合操作
*/
@Test
public void testGroupBy3(){
/**
* counting
*/
Map<String,Long> map1 = Arrays.stream(students).collect(groupingBy(Student::getName,counting()));
map1.forEach((x,y)-> System.out.println(x+"->"+y));
/**
* summingInt
*/
Map<String,Integer> map2 = Arrays.stream(students).collect(groupingBy(Student::getName,summingInt(Student::getScore)));
map2.forEach((x,y)-> System.out.println(x+"->"+y));
/**
* maxBy
*/
Map<String,Optional<Student>> map3 = Arrays.stream(students).collect(groupingBy(Student::getName,maxBy(Comparator.comparing(Student::getScore))));
map3.forEach((x,y)-> System.out.println(x+"->"+y));
/**
* mapping
*/
Map<String,Set<Integer>> map4 = Arrays.stream(students).collect(groupingBy(Student::getName,mapping(Student::getScore,toSet())));
map4.forEach((x,y)-> System.out.println(x+"->"+y));
}
DoubleStream doubleStream;
IntStream intStream; /**
* 原始类型流的初始化
*/
@Before
public void testStream1(){ doubleStream = DoubleStream.of(0.1,0.2,0.3,0.8);
intStream = IntStream.of(1,3,5,7,9);
IntStream stream1 = IntStream.rangeClosed(0,100);
IntStream stream2 = IntStream.range(0,100);
} /**
* 流与原始类型流的转换
*/
@Test
public void testStream2(){
Stream<Double> stream = doubleStream.boxed();
doubleStream = stream.mapToDouble(Double::new);
}
public void peek1(int x) {
System.out.println(Thread.currentThread().getName() + ":->peek1->" + x);
} public void peek2(int x) {
System.out.println(Thread.currentThread().getName() + ":->peek2->" + x);
} public void peek3(int x) {
System.out.println(Thread.currentThread().getName() + ":->final result->" + x);
} /**
* peek,监控方法
* 串行流和并行流的执行顺序
*/
@org.junit.Test
public void testPeek() {
Stream<Integer> stream = Stream.iterate(1, x -> x + 1).limit(10);
stream.peek(this::peek1).filter(x -> x > 5)
.peek(this::peek2).filter(x -> x < 8)
.peek(this::peek3)
.forEach(System.out::println);
} @Test
public void testPeekPal() {
Stream<Integer> stream = Stream.iterate(1, x -> x + 1).limit(10).parallel();
stream.peek(this::peek1).filter(x -> x > 5)
.peek(this::peek2).filter(x -> x < 8)
.peek(this::peek3)
.forEach(System.out::println);
}






/**
* 生成一亿条0-100之间的记录
*/
@Before
public void init() {
Random random = new Random();
list = Stream.generate(() -> random.nextInt(100)).limit(100000000).collect(toList());
} /**
* tip
*/
@org.junit.Test
public void test1() {
long begin1 = System.currentTimeMillis();
list.stream().filter(x->(x > 10)).filter(x->x<80).count();
long end1 = System.currentTimeMillis();
System.out.println(end1-begin1);
list.stream().parallel().filter(x->(x > 10)).filter(x->x<80).count();
long end2 = System.currentTimeMillis();
System.out.println(end2-end1); long begin1_ = System.currentTimeMillis();
list.stream().filter(x->(x > 10)).filter(x->x<80).distinct().sorted().count();
long end1_ = System.currentTimeMillis();
System.out.println(end1-begin1);
list.stream().parallel().filter(x->(x > 10)).filter(x->x<80).distinct().sorted().count();
long end2_ = System.currentTimeMillis();
System.out.println(end2_-end1_); }


val count = sc.parallelize(1 to NUM_SAMPLES).filter { _ =>
val x = math.random
val y = math.random
x*x + y*y < 1}.count()println(s"Pi is roughly ${4.0 * count / NUM_SAMPLES}")

java8之stream的更多相关文章
- Java8的Stream方法findAny空指针异常(NullPointerException)实例对比
实战介绍 学习完Java8的Stream方法,可能你正准备大展身手,却发现遇到不少问题,本篇文章为大家带来一个findAny方法抛出java.lang.NullPointerException的场景. ...
- Java8的Stream API使用
前言 这次想介绍一下Java Stream的API使用,最近在做一个新的项目,然后终于可以从老项目的祖传代码坑里跳出来了.项目用公司自己的框架搭建完成后,我就想着把JDK版本也升级一下吧(之前的项目, ...
- java8的stream功能及常用方法
Java8中stream对集合操作做了简化,用stream操作集合能极大程度简化代码.Stream 就如同一个迭代器(Iterator),单向,不可往复,数据只能遍历一次,遍历过一次后就用尽了. 一. ...
- Java8 Lambda/Stream使用说明
一.Stream流1. 流的基本概念 1.1 什么是流?流是Java8引入的全新概念,它用来处理集合中的数据,暂且可以把它理解为一种高级集合.众所周知,集合操作非常麻烦,若要对集合进行筛选.投影,需要 ...
- Java8 使用stream实现各种list操作
利用java8新特性,可以用简洁高效的代码来实现一些数据处理. 定义1个Apple对象: public class Apple { private Integer id; private String ...
- Java8的Stream语法详解(转载)
1. Stream初体验 我们先来看看Java里面是怎么定义Stream的: A sequence of elements supporting sequential and parallel agg ...
- Java8的Stream流(一) --- 基础用法
Java8中的Stream Stream使用一种类似用SQL语句从数据库查询数据的直观方式来提供一种对Java集合运算和表达的高阶抽象. Stream的特性及优点: 无存储. Stream不是一种数据 ...
- Java8之Stream/Map
本篇用代码示例结合JDk源码讲了Java8引入的工具接口Stream以及新Map接口提供的常用默认方法. 参考:http://winterbe.com/posts/2014/03/16/java ...
- Java8 使用 stream().filter()过滤List对象(查找符合条件的对象集合)
内容简介 本文主要说明在Java8及以上版本中,使用stream().filter()来过滤一个List对象,查找符合条件的对象集合. List对象类(StudentInfo) public clas ...
随机推荐
- jqueryEasyUI列表
背景 因为学习大数据开发这段时间,同时也学习java的一些知识.利用了近五个月的时间来投入学习,当然我选择了一个机构,因为已经做了四年多的开发,所以即使不是做的java但是java还是了解的,这段时间 ...
- MyBatis源码解析【4】反射和动态代理
通过之前的介绍,我们了解了几个组件的生命周期. 它也是我们重要装备之一. 今天我们需要搞一件更加强的装备,叫做反射和动态代理. 如果没有这件装备的话,显然后面的源码boss是打不动的. 顺便说一下,下 ...
- [图形学] Chp18 OpenGL表面纹理函数
以2D表面为例展示纹理贴图,用opengl设置一个2D纹理,颜色存储在32*32*3的数组中,对应的纹理坐标为0<=s, t<=1.0. 画出几个正方形表面,分别以GL_CLAMP(纹理坐 ...
- View学习(二)-View的测量(measure)过程
在上一篇文章中,我们介绍了DecorView与MeasureSpec, 下面的文章就开始讨论View的三大流程. View的三大流程都是通过ViewRoot来完成的.ViewRoot对应于ViewRo ...
- 利用fputcsv导出数据备份数据
今天,分享一个利用fputcsv导出数据备份数据的方法,我也时看到些零零散散的代码,想着拼起来,所以我只提供些思路,以及简单的代码,至于怎么组合能够让它更强大,尽情去探索吧 讲之前先上一段获取数据库里 ...
- Wireshark网络端点和会话
如果想让网络进行正常通信,你必须至少拥有两台设备进行数据流交互.端点(endpoint)就是指网络上能够发送和接受数据的一台设备.举例来说,在TCP/IP的通信中就有两个断电:接收和发送数据系统的IP ...
- java中变量赋值的理解
1.当赋值的值超出声明变量的范围时候,会报错! byte a =200 //会报错,因超出范围. byte a =(byte)200;//进行一个强制转换,就不会报错,不过会超出范围,超出部分会从头开 ...
- Akka(13): 分布式运算:Cluster-Sharding-运算的集群分片
通过上篇关于Cluster-Singleton的介绍,我们了解了Akka为分布式程序提供的编程支持:基于消息驱动的运算模式特别适合分布式程序编程,我们不需要特别的努力,只需要按照普通的Actor编程方 ...
- 剥析surging的架构思想
1.前言 前面第一篇阐述了采用基于.NET CORE微服务架构,应用surging服务端与客户端之间进行通信的简单示例以及对于surging服务化框架简单介绍.在这篇文章中,我们将剥析surgin ...
- CJOJ 1131 机器分配 / Luogu 2066 机器分配 (动态规划)
CJOJ 1131 机器分配 / Luogu 2066 机器分配 (动态规划) Description Luogu: 总公司拥有高效设备M台,准备分给下属的N个分公司.各分公司若获得这些设备,可以为国 ...