POJ 1804 Brainman(5种解法,好题,【暴力】,【归并排序】,【线段树单点更新】,【树状数组】,【平衡树】)
Brainman
Time Limit: 1000MS | Memory Limit: 30000K | |
Total Submissions: 10575 | Accepted: 5489 |
Description
Raymond Babbitt drives his brother Charlie mad. Recently Raymond counted 246 toothpicks spilled all over the floor in an instant just by glancing at them. And he can even count Poker cards. Charlie would love to be able to do cool things like that, too. He wants to beat his brother in a similar task.
Problem
Here's what Charlie thinks of. Imagine you get a sequence of N numbers. The goal is to move the numbers around so that at the end the sequence is ordered. The only operation allowed is to swap two adjacent numbers. Let us try an example:Start with: 2 8 0 3
swap (2 8) 8 2 0 3
swap (2 0) 8 0 2 3
swap (2 3) 8 0 3 2
swap (8 0) 0 8 3 2
swap (8 3) 0 3 8 2
swap (8 2) 0 3 2 8
swap (3 2) 0 2 3 8
swap (3 8) 0 2 8 3
swap (8 3) 0 2 3 8So the sequence (2 8 0 3) can be sorted with nine swaps of adjacent numbers. However, it is even possible to sort it with three such swaps:Start with: 2 8 0 3
swap (8 0) 2 0 8 3
swap (2 0) 0 2 8 3
swap (8 3) 0 2 3 8The question is: What is the minimum number of swaps of adjacent numbers to sort a given sequence?Since Charlie does not have Raymond's mental capabilities, he decides to cheat. Here is where you come into play. He asks you to write a computer program for him that answers the question. Rest assured he will pay a very good prize for it.
Input
For every scenario, you are given a line containing first the length N (1 <= N <= 1000) of the sequence,followed by the N elements of the sequence (each element is an integer in [-1000000, 1000000]). All numbers in this line are separated by single blanks.
Output
Sample Input
4
4 2 8 0 3
10 0 1 2 3 4 5 6 7 8 9
6 -42 23 6 28 -100 65537
5 0 0 0 0 0
Sample Output
Scenario #1:
3 Scenario #2:
0 Scenario #3:
5 Scenario #4:
0
Source
#include <iostream>
#include <stdio.h>
using namespace std;
const int N=;
int a[N],b[N];
int main()
{
int n;
scanf("%d",&n);
for(int k=;k<=n;k++)
{
int m;
scanf("%d",&m);
for(int i=;i<=m;i++)
scanf("%d",&a[i]);
int ans=;
for(int i=;i<=m;i++)
for(int j=i+;j<=m;j++)
if(a[i]>a[j])
ans++;
printf("Scenario #%d:\n%d\n\n",k,ans);
}
return ;
}
第二种归并排序, 对2个已经排好序的数列,进行再排序,只需要把2个数列,从头到尾,按顺序,谁小,谁就先进入tmp数组, 最后tmp数组一定排好序了,然后把TMP数组的元素复制回原数组中即可。
同理,如果我们知道2个子序列的逆序对数量,是否可以通过归并排序一样,求出整体的数量呢?显然是可以的。
这里有一个地方,当左边的数列的a[k]要进tmp数组了, 这个时候,如果右边的指针指向a+mid+p,就说明a[k]比a[mid+1]...a[mid + 2]..a[mid+3].....a[mid+p]都要大!【重要】
也就是说,对于a[k]而言,整个数列中, mid+ mid+2...mid+p都在k后面,同时a[k]比a[mid+1],a[mid+2]...a[mid+p]都要大。 那么显然是增加逆序对数量的。 通过整个方法,计算出整个逆序对的数量即可。
下面给出AC代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
using namespace std;
const int max_n = + ; int n, a[max_n];
int tmp[max_n], ans; void merge(int *a, int *tmp, int l, int mid, int r)
{
if (l >= r) return;
int i = l, j = mid + , k = ;
int count = , flag = ;
while (i <= mid && j <= r)
{
if (a[i] <= a[j])
{
tmp[k ++] = a[i++];
ans += j - mid - ;
}else tmp[k ++ ] = a[j++];
}
while (i <= mid) tmp[k ++] = a[i++], ans += r- mid;
while (j <= r) tmp[k ++] = a[j++];
for (i = ; i != k; ++ i) a[l + i] = tmp[i];
} void mergesort(int *a, int *tmp, int l, int r)
{
if (l >= r) return;
int mid = (l + r) / ;
mergesort(a, tmp, l, mid);
mergesort(a, tmp , mid + , r);
merge(a, tmp, l, mid, r);
} int main()
{
int tt;
scanf("%d", &tt);
for (int i = ; i <= tt; ++ i)
{
cout<<"Scenario #"<<i<<":"<<endl;
scanf("%d", &n);
ans = ;
for (int i = ; i != n; ++ i) scanf("%d", &a[i]);
mergesort(a, tmp, , n - );
cout<<ans<<endl<<endl;
}
}
第三种线段树单点更新
#include <map>
#include <iostream>
#include <set>
#include <cstdio>
#include <cstdlib>
using namespace std; const int max_n = + ; int n;
int a[max_n], count;
map<int, int>G;
map<int, int>::iterator it; struct node
{
int cd, key;
int ls, rs;
int L, R;
node():L(),R(),ls(),rs(),cd(),key(){};
void clear()
{
cd = key = ;
}
}t[max_n * ];
int tail = ; void init()
{
for (int i = ; i != max_n * ; ++ i) t[i].clear();
G.clear();
scanf("%d", &n);
for (int i = ; i != n; ++ i)
{
scanf("%d", &a[i]);
G[a[i]] = ;
}
count = ;
for (it = G.begin(); it != G.end(); ++ it) it -> second = ++ count;
} void make_tree(int now, int LL, int RR)
{
t[now].L = LL;
t[now].R = RR;
if (LL == RR) return;
int mid = (LL + RR)/ ;
make_tree(t[now].ls = ++ tail, LL, mid);
make_tree(t[now].rs = ++ tail, mid + , RR);
} void tran(int now)
{
int left_son = t[now].ls, right_son = t[now].rs;
t[left_son].cd += t[now].cd;
t[right_son].cd += t[now].cd;
t[now].key += t[now].cd;
t[now].cd = ;
} void ins(int now, int LL, int RR)
{ tran(now);
if (t[now].L == LL && t[now].R == RR)
{
t[now].cd ++;
return;
}
t[now].key ++;
int mid = (t[now].L + t[now].R) / ;
if (RR <= mid) {ins(t[now].ls, LL, RR); return;}
if (mid < LL) {ins(t[now].rs, LL, RR); return;}
ins(t[now].ls, LL, mid);
ins(t[now].rs, mid + , RR);
} int find(int now, int LL, int RR)//因为题目的特殊性,只会找一个……
{
tran(now);
if (t[now].L == LL && t[now].R == RR) return t[now].key;
int mid = (t[now].L + t[now].R) / ;
if (RR <= mid) return find(t[now].ls, LL, RR);
if (mid < LL) return find(t[now].rs, LL, RR);
cout<<"wtf?"<<endl;
} void doit()
{
int ans=;
for (int i = ; i != n; ++ i)
{
int num = G[a[i]];
ans += find(, num + , num + );
ins(, , num);
}
cout<<ans<<endl;
} int main()
{
int tt;
scanf("%d",&tt);
make_tree(, , );
for (int i = ; i <= tt; ++ i)
{
cout<<"Scenario #"<<i<<":"<<endl;
init();
doit();
cout<<endl;
}
}
另外还有几种好办法,贴一下
第四种:树状数组
树状数组, 其实和线段树道理一样。 但是对于树状数组,我会单独开一张好好研究哒。 这里就贴一下速度,并没有比线段树快很多……也许我的写法不好?【如果对树状数组有疑惑,可以看我下一篇文章,我会带领你们好好学会树状数组这个神奇的东西~】
#include <cstdio>
#include <cstdlib>
#include <map>
#include <cstring>
using namespace std;
#define lowbit(k) ((k)&(-k)) const int max_n = + ;
int n, a[max_n], s[max_n];
map<int, int>G;
map<int, int>::iterator it;
int count;
void init()
{
scanf("%d", &n);
G.clear();
count = ;
memset(s, , sizeof(s));
for (int i = ; i != n; ++ i)
{
scanf("%d", &a[i]);
G[a[i]] = ;
}
for (it = G.begin(); it != G.end(); ++ it) it -> second = ++ count;
} void ins(int k)
{
s[k] += ;
while ((k += lowbit(k)) <= ) s[k] += ;
} int ask(int k)//1..k的和
{
int tot = s[k];
while (k -= lowbit(k)) tot += s[k];
return tot;
} void doit()
{
int ans = ;
for (int i = ; i != n; ++ i)
{
int num = G[a[i]];
ans += ask(count) - ask(num);
ins(num);
}
printf("%d\n",ans);
} int main()
{
int tt;
scanf("%d", &tt);
for (int i = ; i <= tt; ++ i)
{
printf("Scenario #%d:\n",i);
init();
doit();
printf("\n");
}
}
第五种:平衡树
只要查找,当前在树中,有多少个数字比a[k]要大, 因为是按顺序插入的,所以这个数字的数量就是逆序对的个数
这里有一个小技巧,如果平衡树每次要删的话很麻烦,直接用写成struct,然后新的树就new,最后delete掉即可~
#include <iostream>
#include <cstdio>
#include <cstdlib>
using namespace std;
const int max_n = + ; int n;
const int maxint = 0x7fffffff; struct node
{
node *c[];
int key;
int size;
node():key(),size()
{
c[] = c[] = this;
}
node(int KEY_, node *a0, node *a1):
key(KEY_){c[] =a0, c[]=a1;}
node* rz(){return size = c[]->size + c[]->size + , this;}
}Tnull, *null=&Tnull; struct splay
{
node *root;
splay()
{
root = (new node(*null)) -> rz();
root -> key = maxint;
}
void zig(int d)
{
node *t = root -> c[d];
root -> c[d] = null -> c[d];
null -> c[d] = root;
root = t;
}
void zigzig(int d)
{
node *t = root -> c[d] -> c[d];
root -> c[d] -> c[d] = null -> c[d];
null -> c[d] = root -> c[d];
root -> c[d] = null -> c[d] -> c[!d];
null -> c[d] -> c[!d] = root -> rz();
root = t;
} void finish(int d)
{
node *t = null -> c[d], *p = root -> c[!d];
while (t != null)
{
t = null -> c[d] -> c[d];
null -> c[d] -> c[d] = p;
p = null -> c[d] -> rz();
null -> c[d] = t;
}
root -> c[!d] = p;
}
void select(int k)//谁有k个儿子
{
int t;
while ()
{
bool d = k > (t = root -> c[] -> size);
if (k == t || root -> c[d] == null) break;
if (d) k -= t + ;
bool dd = k > (t = root -> c[d] -> c[] -> size);
if (k == t || root -> c[d] -> c[dd] == null){zig(d); break;}
if (dd) k -= t + ;
d != dd ? zig(d), zig(dd) : zigzig(d);
}
finish(), finish();
root -> rz();
}
void search(int x)
{
while ()
{
bool d = x > root -> key;
if (root -> c[d] == null) break;
bool dd = x > root -> c[d] -> key;
if (root -> c[d] -> c[dd] == null){zig(d); break;}
d != dd ? zig(d), zig(dd) : zigzig(dd);
}
finish(), finish();
root -> rz();
if (x > root -> key) select(root -> c[] -> size + );
} void ins(int x)
{
search(x);
node *oldroot = root;
root = new node(x, oldroot -> c[],oldroot);
oldroot -> c[] = null;
oldroot -> rz();
root -> rz();
}
int sel(int k){return select(k - ), root -> key;}
int ran(int x){return search(x), root -> c[] -> size + ;}
}*sp; int main()
{
int tt;
scanf("%d", &tt);
for (int i = ; i <= tt; ++ i)
{
sp = new splay;
cout<<"Scenario #"<<i<<":"<<endl;
scanf("%d", &n);
int ans = ;
int tmp;
for (int i = ; i != n; ++ i)
{
scanf("%d", &tmp);
tmp = - tmp;
ans += sp -> ran(tmp) - ;
//cout<<sp.ran(tmp) - 1<<endl;
sp -> ins(tmp);
}
delete sp;
cout<<ans<<endl<<endl;
}
}
POJ 1804 Brainman(5种解法,好题,【暴力】,【归并排序】,【线段树单点更新】,【树状数组】,【平衡树】)的更多相关文章
- poj 2892---Tunnel Warfare(线段树单点更新、区间合并)
题目链接 Description During the War of Resistance Against Japan, tunnel warfare was carried out extensiv ...
- HDU 1166 敌兵布阵(线段树单点更新,板子题)
敌兵布阵 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submi ...
- POJ.3321 Apple Tree ( DFS序 线段树 单点更新 区间求和)
POJ.3321 Apple Tree ( DFS序 线段树 单点更新 区间求和) 题意分析 卡卡屋前有一株苹果树,每年秋天,树上长了许多苹果.卡卡很喜欢苹果.树上有N个节点,卡卡给他们编号1到N,根 ...
- POJ.2299 Ultra-QuickSort (线段树 单点更新 区间求和 逆序对 离散化)
POJ.2299 Ultra-QuickSort (线段树 单点更新 区间求和 逆序对 离散化) 题意分析 前置技能 线段树求逆序对 离散化 线段树求逆序对已经说过了,具体方法请看这里 离散化 有些数 ...
- CDOJ 1073 线段树 单点更新+区间查询 水题
H - 秋实大哥与线段树 Time Limit:1000MS Memory Limit:65535KB 64bit IO Format:%lld & %llu Submit S ...
- POJ 1804 Brainman
Brainman Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 7787 Accepted: 4247 Descript ...
- POJ 1804 Brainman(归并排序)
传送门 Description Background Raymond Babbitt drives his brother Charlie mad. Recently Raymond counted ...
- POJ 2892 Tunnel Warfare(线段树单点更新区间合并)
Tunnel Warfare Time Limit: 1000MS Memory Limit: 131072K Total Submissions: 7876 Accepted: 3259 D ...
- poj 2828(线段树单点更新)
Buy Tickets Time Limit: 4000MS Memory Limit: 65536K Total Submissions: 18561 Accepted: 9209 Desc ...
随机推荐
- iOS动态性 运行时runtime初探(强制获取并修改私有变量,强制增加及修改私有方法等)
借助前辈的力量综合一下资料. OC是运行时语言,只有在程序运行时,才会去确定对象的类型,并调用类与对象相应的方法.利用runtime机制让我们可以在程序运行时动态修改类.对象中的所有属性.方法,就算是 ...
- RabbitMQ教程(一) ——win7下安装RabbitMQ
RabbitMQ依赖erlang,所以先安装erlang,然后再安装RabbitMQ; 下载RabbitMQ,下载地址: rabbitmq-server-3.5.6.exe和erlang,下载地址:o ...
- 解决mysql漏洞 Oracle MySQL Server远程安全漏洞(CVE-2015-0411)
有时候会检测到服务器有很多漏洞,而大部分漏洞都是由于服务的版本过低的原因,因为官网出现漏洞就会发布新版本来修复这个漏洞,所以一般情况下,我们只需要对相应的软件包进行升级到安全版本即可. 通过查阅官网信 ...
- Elastic 技术栈之 Filebeat
Elastic 技术栈之 Filebeat 简介 Beats 是安装在服务器上的数据中转代理. Beats 可以将数据直接传输到 Elasticsearch 或传输到 Logstash . Beats ...
- PHP call_user_func
<?php function my_call_back_function(){ echo "hello world!"; } class MyClass{ static fu ...
- Django中Q查询及Q()对象
问题 一般我们在Django程序中查询数据库操作都是在QuerySet里进行进行,例如下面代码: >>> q1 = Entry.objects.filter(headline__st ...
- springMVC(6)---处理模型数据
springMVC(6)---处理模型数据 之前一篇博客,写个怎么获取前段数据:springMVC(2)---获取前段数据,这篇文章写怎么从后端往前端传入数据. 模型数据类型 ...
- jQuery DOM 元素方法 (十)
函数 描述 .get() 获得由选择器指定的 DOM 元素. .index() 返回指定元素相对于其他指定元素的 index 位置. .size() 返回被 jQuery 选择器匹配的元素的数量. . ...
- dubbo源码—service reference
service reference 在编写好服务之后,dubbo会将服务export出去,这个时候就可以编写consumer来调用这个服务了.dubbo作为一个rpc框架,使用者使用远程服务和使用本地 ...
- python matplotlib 绘图基础
在利用Python做数据分析时,探索数据以及结果展现上图表的应用是不可或缺的. 在Python中通常情况下都是用matplotlib模块进行图表制作. 先理下,matplotlib的结构原理: mat ...