Time Limit: 10 Sec  Memory Limit: 256 MB
Submit: 1103  Solved: 536
[Submit][Status][Discuss]

Description

你突然有了一个大房子,房子里面有一些房间。事实上,你的房子可以看做是一个包含n*m个格子的格状矩形,每个格子是一个房间或者是一个柱子。在一开始的时候,相邻的格子之间都有墙隔着。

你想要打通一些相邻房间的墙,使得所有房间能够互相到达。在此过程中,你不能把房子给打穿,或者打通柱子(以及柱子旁边的墙)。同时,你不希望在房子中有小偷的时候会很难抓,所以你希望任意两个房间之间都只有一条通路。现在,你希望统计一共有多少种可行的方案。

Input

第一行两个数分别表示n和m。

接下来n行,每行m个字符,每个字符都会是’.’或者’*’,其中’.’代表房间,’*’代表柱子。

Output

一行一个整数,表示合法的方案数 Mod 10^9

Sample Input

3 3
...
...
.*.

Sample Output

15
 
一眼轮廓线dp
然而为啥搜出来的题解都是高斯消元啊……
那就写高斯消元好了。
矩阵树定理谁都知道:a[i][i]值为 i 的度数,对于i≠j,a[i][j]有边相连时为-1,否则为0。把这个矩阵删掉某一行和某一列以后的行列式值就是生成树数量。
行列式相信也谁都会求:转上三角以后对角线上值的乘积就是了。
窝的瓜呀,模数有毒,不能求逆元。
想想我们逆元是用来干啥的,通过线性变换把某一行变成0。
线性变换?变成0?长得有点像欧几里德算法?
咦,那就像求gcd那样,辗转相除一波,就可以变0惹(当然复杂度相应地变成了$n^{3}logn$)。
#include<cstdio>
#include<algorithm>
#define MN 101
using namespace std; const int MOD=1e9;
inline int mi(int a,int b){
int mmh=;
while (b){
if (b&) mmh=1LL*mmh*a%MOD;
b>>=;a=1LL*a*a%MOD;
}
return mmh;
}
const int fx[]={,-,,},fy[]={,,,-};
int n,m,num[][],NUM=,map[MN][MN];
char s[][];
inline void M(int &x){while(x>=MOD)x-=MOD;while(x<)x+=MOD;}
inline int Gauss(){
int i,j,k,s,f=; for (i=;i<NUM;i++){
for (j=i+;j<NUM;j++){
int x=map[i][i],y=map[j][i],t;
while(y){
t=x/y;x%=y;swap(x,y);
for (k=i;k<=NUM;k++) M(map[i][k]-=1LL*t*map[j][k]%MOD);
for (k=i;k<=NUM;k++) swap(map[i][k],map[j][k]);
f^=;
}
}
if (!map[i][i]) return ;
}
s=;
for (i=;i<NUM;i++) s=1LL*s*map[i][i]%MOD;
return f?s:(MOD-s)%MOD;
}
int main(){
register int i,j,k;
scanf("%d%d",&n,&m);
for (i=;i<=n;i++)
for (scanf("%s",s[i]+),j=;j<=m;j++)
if (s[i][j]=='.') num[i][j]=NUM++;
for (i=;i<=n;i++)
for (j=;j<=m;j++)
if (s[i][j]=='.')
for (k=;k<;k++)
if (s[i+fx[k]][j+fy[k]]=='.') map[num[i][j]][num[i][j]]++,map[num[i][j]][num[i+fx[k]][j+fy[k]]]=map[num[i+fx[k]][j+fy[k]]][num[i][j]]=MOD-; printf("%d\n",Gauss());
}

BZOJ:4031: [HEOI2015]小Z的房间的更多相关文章

  1. bzoj 4031: [HEOI2015]小Z的房间 轮廓线dp

    4031: [HEOI2015]小Z的房间 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 98  Solved: 29[Submit][Status] ...

  2. BZOJ 4031: [HEOI2015]小Z的房间 高斯消元 MartixTree定理 辗转相除法

    4031: [HEOI2015]小Z的房间 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4031 Description 你突然有了一个 ...

  3. 【刷题】BZOJ 4031 [HEOI2015]小Z的房间

    Description 你突然有了一个大房子,房子里面有一些房间.事实上,你的房子可以看做是一个包含n*m个格子的格状矩形,每个格子是一个房间或者是一个柱子.在一开始的时候,相邻的格子之间都有墙隔着. ...

  4. BZOJ 4031 [HEOI2015]小Z的房间(Matrix-Tree定理)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4031 [题目大意] 你突然有了一个大房子,房子里面有一些房间. 事实上,你的房子可以看 ...

  5. BZOJ 4031 HEOI2015 小Z的房间 基尔霍夫矩阵+行列式+高斯消元 (附带行列式小结)

    原题链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4031 Description 你突然有了一个大房子,房子里面有一些房间.事实上,你的房子可 ...

  6. BZOJ 4031: [HEOI2015]小Z的房间 Matrix-Tree定理

    题目链接: http://www.lydsy.com/JudgeOnline/problem.php?id=4031 题解: Matrix-tree定理解决生成树计数问题,其中用到高斯消元法求上三角矩 ...

  7. BZOJ 4031: [HEOI2015]小Z的房间 [矩阵树定理 行列式取模]

    http://www.lydsy.com/JudgeOnline/problem.php?id=4031 裸题........ 问题在于模数是$10^9$ 我们发现消元的目的是让一个地方为0 辗转相除 ...

  8. BZOJ.4031.[HEOI2015]小Z的房间(Matrix Tree定理 辗转相除)

    题目链接 辗转相除解行列式的具体实现? 行列式的基本性质. //864kb 64ms //裸的Matrix Tree定理.练习一下用辗转相除解行列式.(因为模数不是质数,所以不能直接乘逆元来高斯消元. ...

  9. bzoj 4031: [HEOI2015]小Z的房间【矩阵树定理】

    是板子题,因为mod不是质数所以需要辗转相除然而并不知道为啥 高斯消元部分还不知道原理呢--先无脑背过的 #include<iostream> #include<cstdio> ...

随机推荐

  1. Python进阶之迭代器和生成器

    可迭代对象 Python中任意的对象,只要它定义了可以返回一个迭代器的__iter__方法,或者定义了可以支持下标索引的__getitem__方法,那么它就是一个可迭代对象.简单来说,可迭代对象就是能 ...

  2. iOS masonry九宫格 单行 多行布局

    Masonry是个好东西,在当前尺寸各异的iOS开发适配中发挥着至关重要的作用,由于项目中Masonry布局用的比较多,对于UI布局也有了一些自己的理解,经常会有人问道Masonry布局九宫格要怎么布 ...

  3. iOS UIWebView 加载进度条的使用-WKWebView的使用,更新2017.6.26

    1.由于项目中加载网络插件,直接使用了webview加载.使用了三方NJKWebViewProgress进度条的使用,近期在测试时发现,网络缓慢时出现白屏,有卡顿现象. 于是采用了WKWebView进 ...

  4. 监听键盘弹起View上调

    可以用三方库IQKeyboardManager 用这个第三方 http://www.jianshu.com/p/f8157895 #pragma mark - keyboard events - // ...

  5. NOIP2017day1游记

    NOIP 2017总结 Day1 Day1T1 第一眼看到瞬间慌掉,woc这玩意啥! 然后懵逼了两分钟 好的 我相信他是NOIP第一题 那我就打个表吧 然后花五分钟打了个暴力 玩了几组数据 哇!好像有 ...

  6. Xamarin截取/删除emoji表情bug解决方案

    大家都知道,一个英文=1字节,一个汉字2字节,而一个emoji表情=4个字节,在有这三种混用的时候,比如app聊天界面,那么删除和截取便成了很头痛的事情. 问题描述 截取导致乱码,如下图: 解决方案 ...

  7. bzoj 1758: [Wc2010]重建计划

    Description Input 第 一行包含一个正整数N,表示X国的城市个数. 第二行包含两个正整数L和U,表示政策要求的第一期重建方案中修建道路数的上下限 接下来的N-1行描述重建小组的原有方案 ...

  8. 4.sass的分支结构、循环结构、函数

    分支结构 在sass里,可以使用@if让我们根据一些条件来应用特定的样式 结构: @if 条件 { } 如果条件为真的话,括号里的代码就会释放出来 例如: $use-refixes:true; .ro ...

  9. 《Create Your own PHP Framework》笔记

    前言 大力推荐该教程:<Create Your own PHP Framework> Symfony的学习蛮累的,官方文档虽然很丰富,但是组织方式像参考书而不是指南,一些不错的指导性文档常 ...

  10. 微信公众号开发——通过ffmpeg解决amr文件无法播放问题

    今天刚好碰到个需求,要在微信浏览器中实现录音,并在其他页面上播放.录音功能本身是JS SDK的功能,倒没啥问题,然而录音的文件保存下来是amr格式,而IOS的浏览器没法播放amr(据说微信浏览器的vi ...