题目描述

组合数表示的是从n个物品中选出m个物品的方案数。举个例子,从(1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法。根据组合数的定 义,我们可以给出计算组合数的一般公式:

其中n! = 1 × 2 × · · · × n

小葱想知道如果给定n,m和k,对于所有的0 <= i <= n,0 <= j <= min(i,m)有多少对 (i,j)满足是k的倍数。

输入输出格式

输入格式:

第一行有两个整数t,k,其中t代表该测试点总共有多少组测试数据,k的意义见 【问题描述】。

接下来t行每行两个整数n,m,其中n,m的意义见【问题描述】。

输出格式:

t行,每行一个整数代表答案。

输入输出样例

输入样例#1:

1 2

3 3

输出样例#1:

1

输入样例#2:

2 5

4 5

6 7

输出样例#2:

0

7

说明

【样例1说明】

在所有可能的情况中,只有是2的倍数。

【子任务】

可以发现k是先给出的且不会变,想到先预处理出所有的答案

我们知道C(i,j)=C(i-1,j)+C(i-1,j-1),先用O(n^2)处理所有C[i][j]并取模

取b[i][j]表示c[i][j]是否能整除k,判断取模后是否为0即可

设f[i][[j]为对应的n=i,m=j的答案,分析f[i][j]的递推关系

其实打个表就容易找到规律,这里f[i][j]=C[i-1][j]+C[i][j-1]+C[i-1][j-1]+b[i][j]

代码如下,

#include <cstdio>
#include <cstring>
#define N 2020 int T, k, n, m;
int f[N][N];
bool b[N][N]; inline int read()
{
int x = 0, f = 1; char ch = getchar();
while (ch < '0' || ch > '9') {if (ch == '-')f = -1; ch = getchar();}
while (ch >= '0' && ch <= '9') {x = x * 10 + ch - '0'; ch = getchar();}
return x * f;
} int main()
{
T = read(), k = read();
for (int i = 1; i <= N; ++i)
{
f[i][1] = i % k;
f[i][i] = 1;
}
for (int i = 3; i <= 2000; ++i)
for (int j = 2; j <= i - 1; ++j)
f[i][j] = (f[i - 1][j] + f[i - 1][j - 1]) % k;
for (int i = 1; i <= 2000; ++i)
for (int j = 1; j <= i; ++j)
if (!f[i][j]) b[i][j] = 1;
memset(f, 0, sizeof(f));
for (int i = 1; i <= 2000; ++i)
for (int j = 1; j <= 2000; ++j)
f[i][j] = f[i - 1][j] + f[i][j - 1] - f[i - 1][j - 1] + b[i][j];
while (T--)
{
n = read(), m = read();
printf("%d\n", f[n][m]);
}
return 0;
}

Noip2016组合数(数论)的更多相关文章

  1. [Noip2016]组合数(数论)

    题目描述 组合数表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法.根据组合数的定 义,我们可以给出计算 ...

  2. Luogu 2822[NOIP2016] 组合数问题 - 数论

    题解 乱搞就能过了. 首先我们考虑如何快速判断C(i, j ) | k 是否成立. 由于$k$非常小, 所以可以对$k$分解质因数, 接着预处理出前N个数的阶乘的因数中 $p_i$ 的个数, 然后就可 ...

  3. Bzoj 1856: [Scoi2010]字符串 卡特兰数,乘法逆元,组合数,数论

    1856: [Scoi2010]字符串 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1194  Solved: 651[Submit][Status][ ...

  4. noip2016组合数问题

    题目描述 组合数 Cnm​ 表示的是从 n 个物品中选出 m 个物品的方案数.举个例子,从 (1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3) 这三种选择方法.根据组合数的 ...

  5. NOIP2016 组合数问题

    https://www.luogu.org/problem/show?pid=2822 题目描述 组合数表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三个物品中选择两个物品可以 ...

  6. 2559. [NOIP2016]组合数问题

    [题目描述] [输入格式] 从文件中读入数据. 第一行有两个整数t, k,其中t代表该测试点总共有多少组测试数据,k的意义见[问题描述]. 接下来t行每行两个整数n, m,其中n, m的意义见[问题描 ...

  7. [noip2016]组合数问题<dp+杨辉三角>

    题目链接:https://vijos.org/p/2006 当时在考场上只想到了暴力的做法,现在自己看了以后还是没思路,最后看大佬说的杨辉三角才懂这题... 我自己总结了一下,我不能反应出杨辉三角的递 ...

  8. NOIP 2016 组合数问题

    洛谷 P2822 组合数问题 洛谷传送门 JDOJ 3139: [NOIP2016]组合数问题 D2 T1 JDOJ传送门 Description 组合数Cnm表示的是从n个物品中选出m个物品的方案数 ...

  9. noip 2016提高组D2T1 problem

    我们可以先预处理一下组合数模K的值,然后我们可以发现对于答案ji[n][m],可以发现递推式ji[i][j]=ji[i-1][j]+ji[i][j-1]-ji[i-1][j-1]并对于Cij是否%k等 ...

随机推荐

  1. java第一次作业0

    lsl321 java第一次作业 #1. 本章学习总结 你对于本章知识的学习总结 本章我们学习了各种java相关文件的使用,以及码云,博客,pat等程序辅助软件,这些对于我们专业的学习有非常大的帮助, ...

  2. JAVA课程设计--简易计算器(201521123022 黄俊麟)

    1.团队课程设计博客链接 http://www.cnblogs.com/I-love-java/p/7058752.html 2.个人负责模板或任务说明 1.初始化业务逻辑. 2.开方.正负.清零.退 ...

  3. 201521123079《java程序设计》第11周学习总结

    1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结多线程相关内容. 2. 书面作业 本次PTA作业题集多线程 1.互斥访问与同步访问 完成题集4-4(互斥访问)与4-5(同步访问) ...

  4. Python的json and pickle序列化

    json序列化和json反序列化 #!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = '人生入戏' import json a = ...

  5. 框架应用:Spring framework (四) - 事务管理

    事务控制 事务是什么?事务控制? 事务这个词最早是在数据库中进行应用,讲的用户定义的一个数据库操作序列,这些操作要么全做要么全不做,是一个不可分割的工作单位. 事务的管理是指一个事务的开启,内容添加, ...

  6. Java http请求和调用

    关于http get和post请求调用代码以及示例. 参考:http://www.cnblogs.com/zhuawang/archive/2012/12/08/2809380.html http请求 ...

  7. Linux下利用expect,不用交互模式,直接登陆远程主机

    Linux环境下只有在机器20.200.254.18上ssh dataconv@20.200.31.23才能连接到23的机器,而且还需要输入密码(每次都需要输入地址,密码很烦),所以利用expect写 ...

  8. 封装好的图片滑动框架(AndroidImageSlider)

    前言 广告轮播条的重要性不言而喻.在很多类型app中出场率都很高. 今天给大家介绍一个轮播图开源项目,这个项目把轮播图需要的ViewPager跟计时器做了封装,使用极其方便,支持gradle在线依赖. ...

  9. Ubuntu 安装 SQL Server

    SQL Server现在可以在Linux上运行了!正如微软CEO Satya Nadella说的,"Microsoft Loves Linux",既Windows 10内置的Lin ...

  10. LPCTSTR LPCWSTR LPCSTR 含义

    #ifdef UNICODE#define LPCTSTR LPCWSTR#else#define LPCTSTR LPCSTR#endif      LPCTSTR A 32-bit pointer ...