题解

感觉智商为0啊QAQ

显然对于一个长度为\(len\)的border,每个点同余\(n - len\)的部分必然相等

那么我们求一个\(f[a]\)数组,如果存在\(s[x] = 0\)且\(s[y] = 1\)且\(|x - y| = a\)

这个很好求,只要把0和1分别挑出来,NTT卷一下就好了

一个\(len\)合法,即它的\(n - len\)的倍数\(k\),\(f[k]\)都等于0

代码

#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define pdi pair<db,int>
#define mp make_pair
#define pb push_back
#define enter putchar('\n')
#define space putchar(' ')
#define eps 1e-8
#define mo 974711
#define MAXN 500005
//#define ivorysi
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
const int MOD = 998244353,MAXL = (1 << 20);
int W[MAXL + 5],f[MAXL + 5],g[MAXL + 5],N;
char s[MAXN];
int inc(int a,int b) {
return a + b >= MOD ? a + b - MOD : a + b;
}
int mul(int a,int b) {
return 1LL * a * b % MOD;
}
int fpow(int x,int c) {
int res = 1,t = x;
while(c) {
if(c & 1) res = mul(res,t);
t = mul(t,t);
c >>= 1;
}
return res;
}
void NTT(int *p,int len,int on) {
for(int i = 1 , j = len >> 1 ; i < len - 1 ; ++i) {
if(i < j) swap(p[i],p[j]);
int k = (len >> 1);
while(j >= k) {
j -= k;
k >>= 1;
}
j += k;
}
for(int h = 2 ; h <= len ; h <<= 1) {
int wn = W[(MAXL + MAXL / h * on) % MAXL];
for(int k = 0 ; k < len ; k += h) {
int w = 1;
for(int j = k ; j < k + h / 2 ; ++j) {
int u = p[j],t = mul(p[j + h / 2],w);
p[j] = inc(u,t);
p[j + h / 2] = inc(u,MOD - t);
w = mul(w,wn);
}
}
}
if(on == -1) {
int InvL = fpow(len,MOD - 2);
for(int i = 0 ; i < len ; ++i) p[i] = mul(p[i],InvL);
}
}
void Init() {
W[0] = 1;W[1] = fpow(3,(MOD - 1) / MAXL);
for(int i = 2 ; i < MAXL ; ++i) {
W[i] = mul(W[i - 1],W[1]);
}
scanf("%s",s + 1);
}
void Solve() {
int t = 1;
N = strlen(s + 1);
while(t <= 2 * N) t <<= 1;
for(int i = 1 ; i <= N ; ++i) {
f[i] = (s[i] == '1');
g[i] = (s[N - i + 1] == '0');
}
NTT(f,t,1);NTT(g,t,1);
for(int i = 0 ; i < t; ++i) f[i] = mul(f[i],g[i]);
NTT(f,t,-1);
int64 ans = 1LL * N * N;
for(int i = 1 ; i < N ; ++i) {
int t = i;
bool flag = 0;
while(t < N) {
if(f[N - t + 1] || f[N + t + 1]) {flag = 1;break;}
t += i;
}
if(!flag) ans ^= 1LL * (N - i) * (N - i);
}
out(ans);enter;
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Init();
Solve();
}

【LOJ】#6436. 「PKUSC2018」神仙的游戏的更多相关文章

  1. LOJ #6436. 「PKUSC2018」神仙的游戏(字符串+NTT)

    题面 LOJ #6436. 「PKUSC2018」神仙的游戏 题解 参考 yyb 的口中的长郡最强选手 租酥雨大佬的博客 ... 一开始以为 通配符匹配 就是类似于 BZOJ 4259: 残缺的字符串 ...

  2. LOJ 6436 「PKUSC2018」神仙的游戏——思路+卷积

    题目:https://loj.ac/problem/6436 看题解才会. 有长为 i 的 border ,就是有长为 n-i 的循环节. 考虑如果 x 位置上是 0 . y 位置上是 1 ,那么长度 ...

  3. loj#6436. 「PKUSC2018」神仙的游戏(生成函数)

    题意 链接 Sol 生成函数题都好神仙啊qwq 我们考虑枚举一个长度\(len\).有一个结论是如果我们按\(N - len\)的余数分类,若同一组内的全为\(0\)或全为\(1\)(?不算),那么存 ...

  4. LOJ #6436. 「PKUSC2018」神仙的游戏

    题目分析 通过画图分析,如果存在border长度为len,则原串一定是长度为n-len的循环串. 考虑什么时候无法形成长度为len的循环串. 显然是两个不同的字符的距离为len的整数倍时,不存在这样的 ...

  5. loj#6436. 「PKUSC2018」神仙的游戏(NTT)

    题面 传送门 题解 一旦字符串踏上了通配符的不归路,它就永远脱离了温暖的字符串大家庭的怀抱 用人话说就是和通配符扯上关系的字符串就不是个正常的字符串了比如说这个 让我们仔细想想,如果一个长度为\(le ...

  6. 「PKUSC2018」神仙的游戏

    题目链接 比如说上面\(|S|\)为12的字符串,我们欲求出\(f(9)\)的值,那么上面相同颜色的字符必须两两能够匹配.也就是说,同种颜色的字符集里不能同时出现0和1.如果只考虑同种颜色集里相邻的两 ...

  7. LOJ6436. 「PKUSC2018」神仙的游戏 [NTT]

    传送门 思路 首先通过各种手玩/找规律/严谨证明,发现当\(n-i\)为border当且仅当对于任意\(k\in[0,i)\),模\(i\)余\(k\)的位置没有同时出现0和1. 换句话说,拿出任意一 ...

  8. LOJ #6435. 「PKUSC2018」星际穿越(倍增)

    题面 LOJ#6435. 「PKUSC2018」星际穿越 题解 参考了 这位大佬的博客 这道题好恶心啊qwq~~ 首先一定要认真阅读题目 !! 注意 \(l_i<r_i<x_i\) 这个条 ...

  9. LOJ #6432. 「PKUSC2018」真实排名(组合数)

    题面 LOJ #6432. 「PKUSC2018」真实排名 注意排名的定义 , 分数不小于他的选手数量 !!! 题解 有点坑的细节题 ... 思路很简单 , 把每个数分两种情况讨论一下了 . 假设它为 ...

随机推荐

  1. tomcat Failed creating java C:\Program Files\Java\jre6\bin\client\jvm.dll %1 不是有效的 Win32 应用程序。

    jdk版本搞的鬼 请下载64位的jdkj进行安装

  2. dp乱写2:论dp在不在dp中(但在dp范畴)内的应用

    最近正儿八经的学习了dp,有一些题目非常明显看出来就是dp了比如说:过河卒.方格取数.导弹拦截.加分二叉树.炮兵阵地更加明显的还有:采药.装箱问题.过河.金明的预算方案.今天来谈谈dp的dp在不在dp ...

  3. 解决360WiFi有时候手机连接不上

    有可能是无线网卡的问题: 右击“计算机”->选择“管理”->“设备管理器”->网络适配器->选择“Broadcom  802.11n 网络适配器”,或者你实在不知道哪个是无线网 ...

  4. C语言复习---获取最大公约数(辗转相除法和更相减损法)

    源自:百度百科 辗转相除法 辗转相除法:辗转相除法是求两个自然数的最大公约数的一种方法,也叫欧几里德算法. 例如,求(,): ∵ ÷=(余319) ∴(,)=(,): ∵ ÷=(余58) ∴(,)=( ...

  5. Spark记录-Spark作业调试

    在本地IDE里直接运行spark程序操作远程集群 一般运行spark作业的方式有两种: 本机调试,通过设置master为local模式运行spark作业,这种方式一般用于调试,不用连接远程集群. 集群 ...

  6. (64位)本体学习程序(ontoEnrich)系统使用说明文档

    系统运行:文件夹system下,可执行文件ontoEnrichment 概念学习 --------------------------------------------------------1.简 ...

  7. Java SSM框架之MyBatis3(一)MyBatis入门

    MyBatis3介绍 mybatis就是一个封装来jdbc的持久层框架,它和hibernate都属于ORM框架,但是具体的说,hibernate是一个完全的orm框架,而mybatis是一个不完全的o ...

  8. [整理]Error: [ngRepeat:dupes]的解决方法

    sdfsadf <div class="pageNum middle PT10"> <a href="javascript:void(0);" ...

  9. 20155212 2016-2017-2 《Java程序设计》第8周学习总结

    20155212 2016-2017-2 <Java程序设计>第8周学习总结 教材学习内容总结 Chapter14 1. Channel架构与操作 想要取得Channel的实作对象,可以使 ...

  10. 在vue-cli下读取模拟数据请求服务器

    写此记录时vue脚手架的webpack是3.6.0 此文章方法亦可用于vue-cli3,直接在vue.config.js里面添加 本记录使用vue-resource,先安装: cnpm install ...