【LOJ】#6436. 「PKUSC2018」神仙的游戏
题解
感觉智商为0啊QAQ
显然对于一个长度为\(len\)的border,每个点同余\(n - len\)的部分必然相等
那么我们求一个\(f[a]\)数组,如果存在\(s[x] = 0\)且\(s[y] = 1\)且\(|x - y| = a\)
这个很好求,只要把0和1分别挑出来,NTT卷一下就好了
一个\(len\)合法,即它的\(n - len\)的倍数\(k\),\(f[k]\)都等于0
代码
#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define pdi pair<db,int>
#define mp make_pair
#define pb push_back
#define enter putchar('\n')
#define space putchar(' ')
#define eps 1e-8
#define mo 974711
#define MAXN 500005
//#define ivorysi
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
const int MOD = 998244353,MAXL = (1 << 20);
int W[MAXL + 5],f[MAXL + 5],g[MAXL + 5],N;
char s[MAXN];
int inc(int a,int b) {
return a + b >= MOD ? a + b - MOD : a + b;
}
int mul(int a,int b) {
return 1LL * a * b % MOD;
}
int fpow(int x,int c) {
int res = 1,t = x;
while(c) {
if(c & 1) res = mul(res,t);
t = mul(t,t);
c >>= 1;
}
return res;
}
void NTT(int *p,int len,int on) {
for(int i = 1 , j = len >> 1 ; i < len - 1 ; ++i) {
if(i < j) swap(p[i],p[j]);
int k = (len >> 1);
while(j >= k) {
j -= k;
k >>= 1;
}
j += k;
}
for(int h = 2 ; h <= len ; h <<= 1) {
int wn = W[(MAXL + MAXL / h * on) % MAXL];
for(int k = 0 ; k < len ; k += h) {
int w = 1;
for(int j = k ; j < k + h / 2 ; ++j) {
int u = p[j],t = mul(p[j + h / 2],w);
p[j] = inc(u,t);
p[j + h / 2] = inc(u,MOD - t);
w = mul(w,wn);
}
}
}
if(on == -1) {
int InvL = fpow(len,MOD - 2);
for(int i = 0 ; i < len ; ++i) p[i] = mul(p[i],InvL);
}
}
void Init() {
W[0] = 1;W[1] = fpow(3,(MOD - 1) / MAXL);
for(int i = 2 ; i < MAXL ; ++i) {
W[i] = mul(W[i - 1],W[1]);
}
scanf("%s",s + 1);
}
void Solve() {
int t = 1;
N = strlen(s + 1);
while(t <= 2 * N) t <<= 1;
for(int i = 1 ; i <= N ; ++i) {
f[i] = (s[i] == '1');
g[i] = (s[N - i + 1] == '0');
}
NTT(f,t,1);NTT(g,t,1);
for(int i = 0 ; i < t; ++i) f[i] = mul(f[i],g[i]);
NTT(f,t,-1);
int64 ans = 1LL * N * N;
for(int i = 1 ; i < N ; ++i) {
int t = i;
bool flag = 0;
while(t < N) {
if(f[N - t + 1] || f[N + t + 1]) {flag = 1;break;}
t += i;
}
if(!flag) ans ^= 1LL * (N - i) * (N - i);
}
out(ans);enter;
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Init();
Solve();
}
【LOJ】#6436. 「PKUSC2018」神仙的游戏的更多相关文章
- LOJ #6436. 「PKUSC2018」神仙的游戏(字符串+NTT)
题面 LOJ #6436. 「PKUSC2018」神仙的游戏 题解 参考 yyb 的口中的长郡最强选手 租酥雨大佬的博客 ... 一开始以为 通配符匹配 就是类似于 BZOJ 4259: 残缺的字符串 ...
- LOJ 6436 「PKUSC2018」神仙的游戏——思路+卷积
题目:https://loj.ac/problem/6436 看题解才会. 有长为 i 的 border ,就是有长为 n-i 的循环节. 考虑如果 x 位置上是 0 . y 位置上是 1 ,那么长度 ...
- loj#6436. 「PKUSC2018」神仙的游戏(生成函数)
题意 链接 Sol 生成函数题都好神仙啊qwq 我们考虑枚举一个长度\(len\).有一个结论是如果我们按\(N - len\)的余数分类,若同一组内的全为\(0\)或全为\(1\)(?不算),那么存 ...
- LOJ #6436. 「PKUSC2018」神仙的游戏
题目分析 通过画图分析,如果存在border长度为len,则原串一定是长度为n-len的循环串. 考虑什么时候无法形成长度为len的循环串. 显然是两个不同的字符的距离为len的整数倍时,不存在这样的 ...
- loj#6436. 「PKUSC2018」神仙的游戏(NTT)
题面 传送门 题解 一旦字符串踏上了通配符的不归路,它就永远脱离了温暖的字符串大家庭的怀抱 用人话说就是和通配符扯上关系的字符串就不是个正常的字符串了比如说这个 让我们仔细想想,如果一个长度为\(le ...
- 「PKUSC2018」神仙的游戏
题目链接 比如说上面\(|S|\)为12的字符串,我们欲求出\(f(9)\)的值,那么上面相同颜色的字符必须两两能够匹配.也就是说,同种颜色的字符集里不能同时出现0和1.如果只考虑同种颜色集里相邻的两 ...
- LOJ6436. 「PKUSC2018」神仙的游戏 [NTT]
传送门 思路 首先通过各种手玩/找规律/严谨证明,发现当\(n-i\)为border当且仅当对于任意\(k\in[0,i)\),模\(i\)余\(k\)的位置没有同时出现0和1. 换句话说,拿出任意一 ...
- LOJ #6435. 「PKUSC2018」星际穿越(倍增)
题面 LOJ#6435. 「PKUSC2018」星际穿越 题解 参考了 这位大佬的博客 这道题好恶心啊qwq~~ 首先一定要认真阅读题目 !! 注意 \(l_i<r_i<x_i\) 这个条 ...
- LOJ #6432. 「PKUSC2018」真实排名(组合数)
题面 LOJ #6432. 「PKUSC2018」真实排名 注意排名的定义 , 分数不小于他的选手数量 !!! 题解 有点坑的细节题 ... 思路很简单 , 把每个数分两种情况讨论一下了 . 假设它为 ...
随机推荐
- MT【107】立体几何中用阿波罗尼乌斯圆的一道题
分析:利用内外圆知识知道,B,C两点到 AD 的距离$\le4$. 利用体积公式$V=\frac{1}{3}S_{截面}|AD|\le2\sqrt{15}$
- MT【88】抽象函数
分析:此类题一般有两种做法,第一种按解答题做法, 第二种作为填空题找对应的特殊函数,比如这里可以根据三角里和差化积得出$f(x)=\frac{1}{2}cos(\frac{\pi}{3}x)$
- gdb调试coredump文件
linux上程序崩溃起来挺烦人,不过linux 比较好的是有gdb. 1.生成coredump文件 echo "ulimit -c unlimited" >> /etc ...
- 【题解】 bzoj1923: [Sdoi2010]外星千足虫 (线性基/高斯消元)
bzoj1923,戳我戳我 Solution: 这个高斯消元/线性基很好看出来,主要是判断在第K 次统计结束后就可以确定唯一解的地方和\(bitset\)的骚操作 (我用的线性基)判断位置,我们可以每 ...
- 【bzoj4012】 HNOI2015—开店
http://www.lydsy.com/JudgeOnline/problem.php?id=4012 (题目链接) 题意 一棵树,每条边有正边权,每个点的点权非负.若干组询问,强制在线,每次查询点 ...
- 各种蕴含算法思想的DP - 2
study from: https://www.cnblogs.com/flashhu/p/9480669.html 3.斜率dp study from:http://www.cnblogs.com/ ...
- maven pom 中的 build——resources 标签 mybatis加载mapper类及.xml文件
转: maven 理解 2017年12月18日 15:34:31 feicongcong 阅读数:5658 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn ...
- map经典代码---java基础
package com.mon11.day6; import java.util.HashMap; import java.util.Map; /** * 类说明 :实现英文简称和中文全名之间的键值对 ...
- ftp服务部署
注:Centos7环境,添加用户指定目录后默认其为此用户的共享目录. chroot_local_user=YES chroot_list_enable=YES # (default follows) ...
- iOS 中nil,Nil,NULL,NSNull的区别
类与对象的概念 类是对同一类事物高度的抽象,类中定义了这一类对象所应具有的静态属性(属性)和动态属性(方法). 对象是类的一个实例,是一个具体的事物. 类与对象是抽象与具体的关系. 类其实就是一种数据 ...