numpy和pandas简单使用
numpy和pandas简单使用
import numpy as np
import pandas as pd
一维数据分析
numpy中使用array, pandas中使用series
numpy一维数组array
1.基本使用
a= np.array([2,3,4,5])
a
array([2, 3, 4, 5])
a[0]
2
a[1:3]
array([3, 4])
a.dtype
dtype('int64')
2.向量化计算
a=np.array([1,2,3])
b=np.array([4,5,6])
a + b
array([5, 7, 9])
a * b
array([ 4, 10, 18])
3.统计功能
np.mean(a)
2.0
np.std(a)
0.816496580927726
pandas一维数据结构series
1.基本使用
stocks=pd.Series([54.74,190.0,173.14,1050.3,181.86,1139.49],index=['腾讯','阿里巴巴','苹果', '谷歌', 'Facebook', '亚马逊'])
- 描述统计信息
stocks.describe()
count 6.000000
mean 464.921667
std 491.284358
min 54.740000
25% 175.320000
50% 185.930000
75% 835.225000
max 1139.490000
dtype: float64
- 按照位置取值
stocks.iloc[0]
54.74
- 按照索引取值
stocks.loc['腾讯']
54.74
2.向量化计算
s1 = pd.Series([1,2,3,4], index=['a', 'b', 'c', 'd'])
s2 = pd.Series([10,20,30,40], index=['a', 'b', 'e', 'f'])
s3 = s1 + s2
s3
a 11.0
b 22.0
c NaN
d NaN
e NaN
f NaN
dtype: float64
- 相同index名称相加,index不同默认结果为NaN
- 下面两种去除NaN的方法
s3.dropna()
a 11.0
b 22.0
dtype: float64
s3 = s1.add(s2, fill_value=0)
s3
a 11.0
b 22.0
c 3.0
d 4.0
e 30.0
f 40.0
dtype: float64
二维数据分析
numpy二维数组array
1.基本使用
a = np.array([[1,2,3, 4],
[5,6,7,8],
[9,10,11,12]])
a
array([[ 1, 2, 3, 4],
[ 5, 6, 7, 8],
[ 9, 10, 11, 12]])
a[0,2]
3
- 取第一行
a[0,:]
array([1, 2, 3, 4])
- 取第一列
a[:, 0]
array([1, 5, 9])
- 按行计算均值 axis=1 按行 axis=0 按列
a.mean(axis=1)
array([ 2.5, 6.5, 10.5])
pandas二维数据结构DataFrame
1.基本使用
- 向DataFrame中传入一个字典
salesDict = {
'购药时间': ['2018-01-01 星期五', '2018-01-02 星期六', '2018-01-06 星期三'],
'社保卡号': ['001616528', '001616528', '0012602828'],
'商品编码': [236701, 236701, 236701],
'商品名称': ['强力VC银翘片', '清热解毒口服液', '感康'],
'销售数量': [6,1,2],
'应收金额': [82.8,28,16.8],
'实收金额': [69, 24.64, 15]
}
saleDf=pd.DataFrame(salesDict)
saleDf
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
购药时间 | 社保卡号 | 商品编码 | 商品名称 | 销售数量 | 应收金额 | 实收金额 | |
---|---|---|---|---|---|---|---|
0 | 2018-01-01 星期五 | 001616528 | 236701 | 强力VC银翘片 | 6 | 82.8 | 69.00 |
1 | 2018-01-02 星期六 | 001616528 | 236701 | 清热解毒口服液 | 1 | 28.0 | 24.64 |
2 | 2018-01-06 星期三 | 0012602828 | 236701 | 感康 | 2 | 16.8 | 15.00 |
- 使用OrderedDict保证数据有序
from collections import OrderedDict
salesOrderDict = OrderedDict(salesDict)
salesDf = pd.DataFrame(salesOrderDict)
salesDf
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
购药时间 | 社保卡号 | 商品编码 | 商品名称 | 销售数量 | 应收金额 | 实收金额 | |
---|---|---|---|---|---|---|---|
0 | 2018-01-01 星期五 | 001616528 | 236701 | 强力VC银翘片 | 6 | 82.8 | 69.00 |
1 | 2018-01-02 星期六 | 001616528 | 236701 | 清热解毒口服液 | 1 | 28.0 | 24.64 |
2 | 2018-01-06 星期三 | 0012602828 | 236701 | 感康 | 2 | 16.8 | 15.00 |
- 统计功能
salesDf.mean()
商品编码 236701.000000
销售数量 3.000000
应收金额 42.533333
实收金额 36.213333
dtype: float64
- 按照位置读取数据
salesDf.iloc[0,1]
'001616528'
- 读取第一行数据
salesDf.iloc[0,:]
购药时间 2018-01-01 星期五
社保卡号 001616528
商品编码 236701
商品名称 强力VC银翘片
销售数量 6
应收金额 82.8
实收金额 69
Name: 0, dtype: object
- 读取第一列数据
salesDf.iloc[:,0]
0 2018-01-01 星期五
1 2018-01-02 星期六
2 2018-01-06 星期三
Name: 购药时间, dtype: object
- 按照列名称读取数据
- 读取某一列或某几列数据
salesDf.loc[:,'商品名称']
0 强力VC银翘片
1 清热解毒口服液
2 感康
Name: 商品名称, dtype: object
salesDf.loc[:, ['商品名称', '销售数量']]
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
商品名称 | 销售数量 | |
---|---|---|
0 | 强力VC银翘片 | 6 |
1 | 清热解毒口服液 | 1 |
2 | 感康 | 2 |
- 读取列数据的简单写法
salesDf['商品名称']
0 强力VC银翘片
1 清热解毒口服液
2 感康
Name: 商品名称, dtype: object
2.筛选查询
- 构建查询条件
querySet = salesDf.loc[:, '销售数量'] > 1
type(querySet)
pandas.core.series.Series
querySet
0 True
1 False
2 True
Name: 销售数量, dtype: bool
- 应用查询条件
salesDf.loc[querySet,:]
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
购药时间 | 社保卡号 | 商品编码 | 商品名称 | 销售数量 | 应收金额 | 实收金额 | |
---|---|---|---|---|---|---|---|
0 | 2018-01-01 星期五 | 001616528 | 236701 | 强力VC银翘片 | 6 | 82.8 | 69.0 |
2 | 2018-01-06 星期三 | 0012602828 | 236701 | 感康 | 2 | 16.8 | 15.0 |
3.pandas读取execl
这里依赖于xlrd
fileNameStr = './手机销售情况.xlsx'
xls = pd.ExcelFile(fileNameStr)
salesDf = xls.parse('Sheet1')
- 读取前5行
salesDf.head()
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
商品名称 | 单价 | 销量 | |
---|---|---|---|
0 | IphoneXsMax | 9900 | 100000 |
1 | IphoneXR | 5000 | 500000 |
2 | 小米9 | 2999 | 2000000 |
3 | IpadMini5 | 2999 | 100000000 |
- 查看数据类型
salesDf.loc[:, '单价'].dtype
dtype('int64')
salesDf.dtypes
商品名称 object
单价 int64
销量 int64
dtype: object
- 查看数据行数列数
salesDf.shape
(4, 3)
- 每一列的描述统计信息
salesDf.describe()
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
单价 | 销量 | |
---|---|---|
count | 4.000000 | 4.000000e+00 |
mean | 5224.500000 | 2.565000e+07 |
std | 3256.603599 | 4.957341e+07 |
min | 2999.000000 | 1.000000e+05 |
25% | 2999.000000 | 4.000000e+05 |
50% | 3999.500000 | 1.250000e+06 |
75% | 6225.000000 | 2.650000e+07 |
max | 9900.000000 | 1.000000e+08 |
numpy和pandas简单使用的更多相关文章
- python之pandas简单介绍及使用(一)
python之pandas简单介绍及使用(一) 一. Pandas简介1.Python Data Analysis Library 或 pandas 是基于NumPy 的一种工具,该工具是为了解决数据 ...
- 1.理解Numpy、pandas
之前一直做得只是采集数据,而没有再做后期对数据的处理分析工作,自己也是有意愿去往这些方向学习的,最近就在慢慢的接触. 首先简单理解一下numpy和pandas:一.NumPy:1.NumPy是高性能计 ...
- python及numpy,pandas易混淆的点
https://blog.csdn.net/happyhorizion/article/details/77894035 初接触python觉得及其友好(类似matlab),尤其是一些令人拍案叫绝不可 ...
- NumPy和Pandas常用库
NumPy和Pandas常用库 1.NumPy NumPy是高性能科学计算和数据分析的基础包.部分功能如下: ndarray, 具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组. 用于对整组数 ...
- numpy,scipy,pandas 和 matplotlib
numpy,scipy,pandas 和 matplotlib 本文会介绍numpy,scipy,pandas 和 matplotlib 的安装,环境为Windows10. 一般情况下,如果安装了Py ...
- python安装numpy和pandas
最近要对一系列数据做同比比较,需要用到numpy和pandas来计算,不过使用python安装numpy和pandas因为linux环境没有外网遇到了很多问题就记下来了.首要条件,python版本必须 ...
- 如何快速地从mongo中提取数据到numpy以及pandas中去
mongo数据通常过于庞大,很难一下子放进内存里进行分析,如果直接在python里使用字典来存贮每一个文档,使用list来存储数据的话,将很快是内存沾满.型号拥有numpy和pandas import ...
- numpy、pandas
numpy: 仨属性:ndim-维度个数:shape-维度大小:dtype-数据类型. numpy和pandas各def的axis缺省为0,作用于列,除DataFrame的.sort_index()和 ...
- [转] python安装numpy和pandas
最近要对一系列数据做同比比较,需要用到numpy和pandas来计算,不过使用python安装numpy和pandas因为linux环境没有外网遇到了很多问题就记下来了.首要条件,python版本必须 ...
随机推荐
- Android dimen
转自:Android:dimen尺寸资源文件的使用 dimen.xml在values文件夹下面 <resources> <!-- Default screen margins, pe ...
- SparkException: Master removed our application
come from https://stackoverflow.com/questions/32245498/sparkexception-master-removed-our-application ...
- 怎样实现在DBGrid中双击选择整行,并且可以多选?谢谢!!
DBGrid1->Options里有个dgMultiSelect,把它设为true就能多选了 先设置DBGrid1->options中dgRowSelect = true, dgMulti ...
- gson 说明
JSON对象格式 法兹测试仪测试案例编纂JavaScript对象表示法(JSON)格式的特殊字符转义,类型等,由于谷歌GSON是底层的JSON库处理类型的详细说明,请参阅到GSON文档的详细信息,请参 ...
- JAVA类变量(静态变量)
类变量也称为静态变量,在类中以static关键字声明,但必须在方法.构造方法和语句块之外. -无论一个类创建了多少个对象,类只拥有类变量的一份拷贝. -静态变量除了被声明为常量外很少使用.常量是指声明 ...
- bzoj1038
这是一道非常有意思的题目 Description 致力于建设全国示范和谐小村庄的H村村长dadzhi,决定在村中建立一个瞭望塔,以此加强村中的治安.我们将H村抽象为一维的轮廓.如下图所示 我们可以用一 ...
- HGOI 20181027 幻象(概率DP)
40 pts: 考场上打了40分暴力,理论的话就是概率树,把每一个状态去去到各个带权(概率)的和就是答案 最终处理的话就是dfs出01序列0代表没有幻象,1代表出现幻象然后在每一次dfs出一段序列的时 ...
- shell中exec命令
1.find中的-exec参数 在当前目录下(包含子目录),查找所有txt文件并找出含有字符串"bin"的行 find ./ -name "*.txt" -ex ...
- Java基础-编写问候语-“Hello World”
Java基础-编写问候语-“Hello World” 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.编写“Hello World”程序 1>.编写源代码 任何文本编辑起都 ...
- 百度钱包、百付宝、baifubao接入支付的常见问题
[5004:参数非法,请检查输入参数后重试.]:检查是否缺少了其它必要的参数,我当时是缺少了order_no [5804,抱歉,订单创建失败,请联系客服处理]:即验证签名失败,这个只能参考文档进行处理 ...