题目

A/9973=n

那么:n= A - A / 9973 * 9973   ……①

设:A/B=x  则A=B*x,代入①  得  n=B*x-A/9973*9973

然后这个方程中的A/9973不要去纠结它,A就当不知道,然后,方程可变成二元方程 B * x - 9973 * y = n ;

故:(x/n)B+(-y/n)9973=1=GCD(B,9973),该方程有解。

  要求x和y,先求X=x/n和Y=-y/n,即先解方程BX+9973Y=1。

  最后,x=X*n。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
const int m = 9973;
void gcd(int a,int b,int &x,int &y)
{
if(b==0)
{
x=1;y=0;
return ;
}
gcd(b,a%b,x,y);
int t = x;
x = y;
y = t - (a/b)*y;
}
int main()
{
int n,a,b,x,y;
scanf("%d",&n);
while(n--)
{
scanf("%d%d",&a,&b);//a=A%9973
gcd(b,m,x,y);
x=(x%m+m)%m;
x = x*a%m;
printf("%d\n",x); }
return 0;
}

其实就是数学当中的类似化简方程之类的题。化简成exgcd可以解决的形式。

hdu 1576 A/B 【扩展欧几里德】的更多相关文章

  1. HDU 1576 A/B 扩展欧几里德算法

    A/B Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  2. HDU 2669 Romantic(扩展欧几里德)

    题目链接:pid=2669">http://acm.hdu.edu.cn/showproblem.php?pid=2669 Problem Description The Sky is ...

  3. HDU 2669 Romantic【扩展欧几里德】

    裸的扩展欧几里德,求最小的X,X=((X0%b)+b)%b,每个X都对应一个Y,代入原式求解可得 #include<stdio.h> #include<string.h> ty ...

  4. hdu 1576 A/B (扩展欧几里德简单运用)

    http://acm.hdu.edu.cn/showproblem.php?pid=1576 A/B Time Limit: 1000/1000 MS (Java/Others) Memory Lim ...

  5. HDU 1576 A/B【扩展欧几里德】

    设A/B=x,则A=Bx n=A%9973=A-9973*y=Bx-9973*y 用扩展欧几里德求解 #include<stdio.h> #include<string.h> ...

  6. HDU 2669 Romantic 扩展欧几里德---->解不定方程

    Romantic Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  7. HDU 2669 Romantic(扩展欧几里德, 数学题)

    题目 //第一眼看题目觉得好熟悉,但是还是没想起来//洪湖来写不出来去看了解题报告,发现是裸的 扩展欧几里得 - - /* //扩展欧几里得算法(求 ax+by=gcd )//返回d=gcd(a,b) ...

  8. HDU 3923 Invoker(polya定理+乘法逆元(扩展欧几里德+费马小定理))

    Invoker Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 122768/62768K (Java/Other) Total Subm ...

  9. hdu2669与hdu1576(扩展欧几里德)

    模板: int Extend_Euclid(int a, int b, int &x, int &y){         if(b == 0){             x = 1; ...

  10. HDU 1576 A/B (两种解法)

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=1576 分析:等式枚举法,由题意可得:, ,代入 ,    得:,把变量 合在一起得: :即满足 为 倍 ...

随机推荐

  1. (转)android拨打电话崩溃6.0以上实时动态权限申请

    文章转自:http://blog.csdn.net/qq_29988575/article/details/54909213 6.0以下手机正常,6.0以上的却崩溃 解决方法: targetSdkVe ...

  2. 使用vim编程步骤

    先用vim 名字.cpp //创建一个.cpp文件进行代码编写 可以调用g++ 名字.cpp的形式进行编译,更好的方法是采用CMakeLists.txt touch CMakeLists.txt // ...

  3. 洛谷2860 [USACO06JAN]冗余路径Redundant Paths

    原题链接 题意实际上就是让你添加尽量少的边,使得每个点都在至少一个环上. 显然对于在一个边双连通分量里的点已经满足要求,所以可以用\(tarjan\)找边双并缩点. 对于缩点后的树,先讲下我自己的弱鸡 ...

  4. xml配置sql语句

  5. PHP 过滤特殊符号

    function strFilter($str){ $str = str_replace('`', '', $str); $str = str_replace('·', '', $str); $str ...

  6. Vue修饰符

    为了方便大家写代码,vue.js给大家提供了很多方便的修饰符,比如我们经常用到的取消冒泡,阻止默认事件等等~ 目录 表单修饰符 事件修饰符 鼠标按键修饰符 键值修饰符 v-bind修饰符(实在不知道叫 ...

  7. cocos jsb工程转html 工程

    1 CCBoot.js prepare方法:注掉下面这行,先加载moduleConfig中的脚本后加载user脚本 //newJsList = newJsList.concat(jsList); // ...

  8. jdbc元数据 以及自己动手写一个curd框架

      数据库元数据(MetaData):数据库存储结构定义信息 (库.表.列 定义信息) ParameterMetaData 参数元数据 ---- 获得预编译SQL语句中 ? 信息 getParamet ...

  9. PHP删除空格函数

    删除空格或其他字符的相关函数 ltrim函数 描述:实现删除字符串开始位置的空格或其他字符 语法:string ltrim(string $str [,string $charlist]) 说明:ch ...

  10. 2018.12.18 bzoj2242: [SDOI2011]计算器(数论)

    传送门 数论基础题. 对于第一种情况用快速幂,第二种用exgcdexgcdexgcd,第三种用bsgsbsgsbsgs 于是自己瞎yyyyyy了一个bsgsbsgsbsgs的板子(不知道是不是数据水了 ...