Describe:

  求一个有向图加多少条边可以变成一个强连通图

Solution:

  Tarjan缩点染色后,判断出度和入度,所有点的出度 = 0 的和 和 入度 = 0 的和的最大值即为所求。

缩点染色

for(int i = 1;i <= n;++i)
{
if(!dfn[i])
{
tarjan(i);
}
}
void tarjan(int s)
{
dfn[s] = low[s] = ++tot;
stk[stk_siz++] = s;
instk[s] = true; for(int i = id[s];~i;i = e[i].pre)
{
int to = e[i].to;
if(!dfn[to])
{
tarjan(to);
low[s] = min(low[s],low[to]);
}
else if(instk[to])
low[s] = min(low[s],dfn[to]);
}
if(dfn[s] == low[s])
{
++colid;
while(stk_siz > 0 && stk[stk_siz] != s)
{
--stk_siz;
int tmp = stk[stk_siz];
instk[tmp] = false;
col[tmp] = colid;
}
}
}

进行每一个缩点后的出度入度判断

for(int i = 0;i < m;++i)
{
from = e[i].from;
to = e[i].to;
//咋忘了缩点了!!这是缩点后的操作
// cout<<from<<" "<<to<<endl;
// cout<<col[from]<<" "<<col[to]<<endl;
if(col[from] != col[to])
{
in[col[to]]++;
out[col[from]]++;
}
}
int ret = 0,innum = 0,outnum = 0;
for(int i = 1;i <= colid;++i)
{
if(!in[i])innum++;
if(!out[i])outnum++;
}
ret = max(innum,outnum);

还要注意的就是缩成一个点的时候,也就是本来就是一个强连通分量是不需要添加边的

Coding:

#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int maxn = 2e4 + 1e3;
const int maxm = 5e4 + 1e3;
struct node{
int from,to,pre;
node(){}
node(int to,int pre):to(to),pre(pre){}
}e[maxm];
int colid;
int id[maxn],cnt;
int col[maxn];
int in[maxn],out[maxn];
int dfn[maxn],low[maxn];
int tot;
int stk[maxn],stk_siz; bool instk[maxn];
void add(int from,int to)
{
e[cnt].to = to;
e[cnt].from = from;
e[cnt].pre = id[from];
id[from] = cnt++;
}
void init()
{
memset(id,-1,sizeof(id));
memset(instk,0,sizeof(instk));
memset(dfn,0,sizeof(dfn));
memset(in,0,sizeof(in));
memset(out,0,sizeof(out));
cnt = tot = colid = stk_siz = 0;
}
void tarjan(int s)
{
dfn[s] = low[s] = ++tot;
stk[stk_siz++] = s;
instk[s] = true; for(int i = id[s];~i;i = e[i].pre)
{
int to = e[i].to;
if(!dfn[to])
{
tarjan(to);
low[s] = min(low[s],low[to]);
}
else if(instk[to])
low[s] = min(low[s],dfn[to]);
}
if(dfn[s] == low[s])
{
++colid;
while(stk_siz > 0 && stk[stk_siz] != s)
{
--stk_siz;
int tmp = stk[stk_siz];
instk[tmp] = false;
col[tmp] = colid;
}
}
}
int main()
{
int t,n,m;
scanf("%d",&t);
while(t--)
{
init();
scanf("%d%d",&n,&m);
int from,to;
for(int i = 1;i <= m;++i)
{
scanf("%d%d",&from,&to);
add(from,to);
}
for(int i = 1;i <= n;++i)
{
if(!dfn[i])
{
tarjan(i);
}
}
//边的存储是从1开始!!
for(int i = 0;i < m;++i)
{
from = e[i].from;
to = e[i].to;
//咋忘了缩点了!!这是缩点后的操作
// cout<<from<<" "<<to<<endl;
// cout<<col[from]<<" "<<col[to]<<endl;
if(col[from] != col[to])
{
in[col[to]]++;
out[col[from]]++;
}
}
int ret = 0,innum = 0,outnum = 0;
for(int i = 1;i <= colid;++i)
{
if(!in[i])innum++;
if(!out[i])outnum++;
}
ret = max(innum,outnum);
//特殊判断一下,一个点的时候(一种颜色的时候就是强连通了)
if(colid == 1)
printf("%d\n",0);
else
printf("%d\n",ret);
}
return 0;
}

  

Tarjan求缩点化强连通图的更多相关文章

  1. 【BZOJ3331】[BeiJing2013]压力 Tarjan求点双

    [BZOJ3331][BeiJing2013]压力 Description 如今,路由器和交换机构建起了互联网的骨架.处在互联网的骨干位置的核心路由器典型的要处理100Gbit/s的网络流量.他们每天 ...

  2. tarjan求强连通分量+缩点+割点以及一些证明

    “tarjan陪伴强联通分量 生成树完成后思路才闪光 欧拉跑过的七桥古塘 让你 心驰神往”----<膜你抄>   自从听完这首歌,我就对tarjan开始心驰神往了,不过由于之前水平不足,一 ...

  3. tarjan求强连通分量+缩点+割点/割桥(点双/边双)以及一些证明

    “tarjan陪伴强联通分量 生成树完成后思路才闪光 欧拉跑过的七桥古塘 让你 心驰神往”----<膜你抄>   自从听完这首歌,我就对tarjan开始心驰神往了,不过由于之前水平不足,一 ...

  4. 连通分量模板:tarjan: 求割点 &amp;&amp; 桥 &amp;&amp; 缩点 &amp;&amp; 强连通分量 &amp;&amp; 双连通分量 &amp;&amp; LCA(近期公共祖先)

    PS:摘自一不知名的来自大神. 1.割点:若删掉某点后.原连通图分裂为多个子图.则称该点为割点. 2.割点集合:在一个无向连通图中,假设有一个顶点集合,删除这个顶点集合,以及这个集合中全部顶点相关联的 ...

  5. Tarjan求强连通分量,缩点,割点

    Tarjan算法是由美国著名计算机专家发明的,其主要特点就是可以求强连通分量和缩点·割点. 而强联通分量便是在一个图中如果有一个子图,且这个子图中所有的点都可以相互到达,这个子图便是一个强连通分量,并 ...

  6. HDU 1827 Summer Holiday(tarjan求强连通分量+缩点构成新图+统计入度+一点贪心思)经典缩点入门题

    Summer Holiday Time Limit: 10000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  7. Tarjan求强联通分量+缩点

    提到Tarjan算法就不得不提一提Tarjan这位老人家 Robert Tarjan,计算机科学家,以LCA.强连通分量等算法闻名.他拥有丰富的商业工作经验,1985年开始任教于普林斯顿大学.Tarj ...

  8. POJ 1236 Network of Schools (tarjan算法+缩点)

    思路:使用tarjan求强连通分量并进行缩点,判断所有入度为0的点,这个点就是必须要给予文件的点,分别计算出度,入度为零的点的个数,取二者的最大值就是把这个图变成强连通需要加的边数. 一个取值需要讨论 ...

  9. UESTC 901 方老师抢银行 --Tarjan求强连通分量

    思路:如果出现了一个强连通分量,那么走到这个点时一定会在强连通分量里的点全部走一遍,这样才能更大.所以我们首先用Tarjan跑一遍求出所有强连通分量,然后将强连通分量缩成点(用到栈)然后就变成了一个D ...

随机推荐

  1. 看看用PS来转基因的动物,居然很欢乐!!

    出于礼貌,我先笑一下,哈哈哈哈哈哈!好了,开始.Gyyporama是挪威的一名程序员,他无聊的时候会从网上找来一些动物的图片,把他们的头和身体进行混合,生成另一种奇怪的动物.然后邀请其他网友过来给他们 ...

  2. post方式发送请求报文

    $url="http://www.test.com/04_demo_weather.php?id=5"; $ci=curl_init($url); curl_setopt($ci, ...

  3. 如何查看api项目接口

    http://www.api.com/Api/Page/index/?format_type=json&api_cate=cms&ma=8026

  4. js实现多标签页效果

    点击导航按钮切换div的内容 html代码: <div class="tabs"> <ul id="tab"> <li>&l ...

  5. curl命令整理

    ##curl命令 curl命令是一个功能强大的网络工具,它能够通过http.ftp等方式下载文件,也能够上传文件. #####1. 下载单个文件,默认将输出打印到标准输出中(STDOUT)中``` c ...

  6. one or more

    想到以后如果一直都是这样,那么以后的生活是多么多么可怕啊. 感觉毫无期盼.没有意义. 如果变得理所当然那是多么多么让人害怕的事,吓得让人发抖. 所以在以后漫长的岁月里,还是一个人吧 如果相互看不惯,感 ...

  7. 再一道区间DP -- P4170 [CQOI2007]涂色

    https://www.luogu.org/problemnew/show/P4170 一道简单的区间DP,注意读入 #include <bits/stdc++.h> #define up ...

  8. 2018.11.07 codeforces559C. Gerald and Giant Chess(dp+组合数学)

    传送门 令f[i]f[i]f[i]表示对于第iii个棋子,从(1,1)(1,1)(1,1)出发到它不经过其它棋子的方案数. 于是我们假设(h,w)(h,w)(h,w)有一个棋子,求出它的fff值就可以 ...

  9. react属性绑定

    1.属性值绑定state里的数据,不用引号 class App extends Component { constructor(props){ super(props); this.state = { ...

  10. jitter

    release jitter of tasks there is a distinction between the real activation request and the actual ac ...