传送门

组合数学简单题。


Ans=(nm)∗1Ans=\binom {n} {m}*1Ans=(mn​)∗1~(n−m)(n-m)(n−m)的错排数。

前面的直接线性筛逆元求。

后面的错排数递推式本蒟蒻竟然推出来了。

首先说说为什么Ans=(nm)∗1Ans=\binom {n} {m}*1Ans=(mn​)∗1~nnn-mmm的错排数。

考虑首先选出mmm个排列正确的数有(nm)\binom {n} {m}(mn​)种选法。

然后剩下的n−mn-mn−m个数因为有严格的大小关系相当于只需要保证每个数与其下标不相同。

那么我们把这n−mn-mn−m个数提出来。

它们的错排数跟111~nnn-mmm的错排数是相同的。

因此就是是这样了。

所以错排数怎么推呢?

假设已经求出了1,11,11,1~2,12,12,1 ~ 333 … 111 ~ nnn-111的错排数,要求111~nnn的错排数。

我们设111~iii的错排数为f[i]f[i]f[i]。

考虑现在在某个排列111~i−1i-1i−1中加入iii (i≥2)(i \geq 2)(i≥2)。

那么有两种情况。

  1. 已有的排列中排列正确的数个数为0,那么只用从原排列中随便选个数放到第iii个位置,然后拿iii去填空就行了,方案数为(i−1)∗f[i−1](i-1)*f[i-1](i−1)∗f[i−1]。
  2. 已有的排列中排列正确的数个数为1,那么把这个数挪到第iii个位置,然后用iii去填空就行了,由于i−1i-1i−1个数都有可能成为那个排列正确的数,而且对于剩下的i−2i-2i−2个数都是错排的,因此方案数为(i−1)∗f[i−2](i-1)*f[i-2](i−1)∗f[i−2]

    =>f[i]=(i−1)∗(f[i−1]+f[i−2])f[i]=(i-1)*(f[i-1]+f[i-2])f[i]=(i−1)∗(f[i−1]+f[i−2])

代码:

#include<bits/stdc++.h>
using namespace std;
inline int read(){
	int ans=0;
	char ch=getchar();
	while(!isdigit(ch))ch=getchar();
	while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
	return ans;
}
const int mod=1e9+7,N=1e6+5;
int T,n,m,f[N],ifac[N],fac[N];
int main(){
	T=read();
	f[0]=1,f[1]=0,fac[0]=fac[1]=ifac[1]=ifac[0]=1;
	for(int i=2;i<=N-5;++i)fac[i]=1ll*fac[i-1]*i%mod,ifac[i]=1ll*(mod-mod/i)*ifac[mod%i]%mod,f[i]=1ll*(f[i-1]+f[i-2])*(i-1)%mod;
	for(int i=2;i<=N-5;++i)ifac[i]=1ll*ifac[i]*ifac[i-1]%mod;
	while(T--)n=read(),m=read(),printf("%d\n",1ll*fac[n]*ifac[m]%mod*ifac[n-m]%mod*f[n-m]%mod);
	return 0;
}

2018.10.25 bzoj4517: [Sdoi2016]排列计数(组合数学)的更多相关文章

  1. BZOJ4517:[SDOI2016]排列计数(组合数学,错排公式)

    Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是 ...

  2. BZOJ4517 Sdoi2016 排列计数 【DP+组合计数】*

    BZOJ4517 Sdoi2016 排列计数 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 ...

  3. bzoj-4517 4517: [Sdoi2016]排列计数(组合数学)

    题目链接: 4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 846  Solved: 530[Submit][ ...

  4. [BZOJ4517][SDOI2016]排列计数(错位排列)

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 1616  Solved: 985[Submit][Statu ...

  5. [SDOI2016] 排列计数 (组合数学)

    [SDOI2016]排列计数 题目描述 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰 ...

  6. bzoj4517[Sdoi2016]排列计数(组合数,错排)

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 1792  Solved: 1111[Submit][Stat ...

  7. 洛谷P4071 [SDOI2016] 排列计数 [组合数学]

    题目传送门 排列计数 题目描述 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m ...

  8. [BZOJ4517] [Sdoi2016] 排列计数 (数学)

    Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是 ...

  9. BZOJ 4517: [Sdoi2016]排列计数(组合数学)

    题面 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m ...

随机推荐

  1. 【转】web.xml配置项详解

    史上最全web.xml配置文件元素详解   一.web.xml配置文件常用元素及其意义预览 1 <web-app> 2 3 <!--定义了WEB应用的名字--> 4 <d ...

  2. idea不识别yml配置文件,怎么办?

      问题描述: 如下图,新建的springboot项目,添加了自定义的配置文件后,2.yml无法像上方文件的一样,被识别成配置文件! 虽然可能不会影响项目(不确定),但问题不解决,根本没有心情开始下一 ...

  3. spring源码分析(一)

    一.首先分析AliasRegistry接口. 1.Alias别名,Registry注册表,AliasRegistry别名注册表接口. 2.共有四个方法,注册别名,判断是否别名,获取别名数组,移除别名. ...

  4. httpclient的简单使用

    1.通过get请求后台,注意tomcat的编码设置成utf-8;    <Connector connectionTimeout="20000" port="808 ...

  5. java String 中替换"\"为"\\"

    表示路径的字符串  c:\work\test\afd.out, 要形成 c:\\work\\test\\afd.out   用 String str = strBsf.replaceAll(" ...

  6. centos7下Redis3的安装与使用

    redis是一个开源的,使用C语言编写的,支持网络交互的,可基于内存也可持久化的Key-Value数据库. 一.安装redis 下载redis源码 > wget http://download. ...

  7. datepicker动态初始化

    datepicker 初始化动态表单的input,需要调用jquery的on方法来给未来元素初始化. //对动态添加的时间文本框进行动态初始化 $('table').on("focus&qu ...

  8. 2.git使用之git fetch和git push的区别

    . git fetch:相当于是从远程获取最新版本到本地,不会自动merge git fetch origin master git log -p master..origin/master git ...

  9. RDMA的基础概念

    一张图可以简单明确的说明,目前RDMA的几种技术的差别: RDMA是remote Direct memory access的简称,有几个最基本的特点: CPU offload kernel bypas ...

  10. SoftwareEngineering.APIDesign.iOS

    API Design for iOS/Mac (Objective-c Edition) 1. UI Control Library API的设计 和已有组件保持一致(例如: 使用标准的API, 模型 ...