洛谷题目传送门

和魔法森林有点像,都是动态维护最小生成树(可参考一下Blog的LCT总结相关部分)

至于从小到大还是从大到小当然无所谓啦,我是从小到大排序,每次枚举边,还没连通就连,已连通就替换环上最小的一条边,可以保证最优。如果已经构成了生成树,就可以更新答案,因为当前枚举到的一定是生成树里最大的,所以直接用当前减去最小更新答案。

至于最小的怎样维护,其实根本不需要什么别的set什么的数据结构。只要标记一下在生成树中的边,再搞一个指针指向在树中最小的边就好啦。当最小的边也被替换,就把指针后移,直到再找到一个在树中的边为止。

吐槽:注意了,有自环!!!我本来该1A却调试了2h,本地拿管理员的标程自造数据(没造自环)对拍几十万组无问题?!

卡常的地方挺多的,在LCT中应该算挺快的吧(比下面Niko巨佬的LCT代码快了\(1 \over 3\)左右,但是Niko巨佬写了个rank1的代码?!仔细看了下,是优化的暴力?貌似会被卡成\(O(NM)\)?!强烈建议再加强数据。。。。。。

#include<cstdio>
#include<algorithm>
using namespace std;
#define R register int
#define I inline void
#define lc c[x][0]
#define rc c[x][1]
#define in(z) ini=&z;\
while(*++q<'-');\
*ini=*q&15;\
while(*++q>'-')*ini*=10,*ini+=*q&15//读入卡常
const int N=50001,M=200009,L=N+M;
int f[L],c[L][2],mn[L],ff[N];
unsigned short v[L];//short卡常
bool r[L],vis[M];
char str[M<<6];
struct EDGE{
int u,v,l;
inline bool operator<(EDGE x)const{
return l<x.l;
}
}e[M];
inline bool nroot(R x){return c[f[x]][0]==x||c[f[x]][1]==x;}
inline int get(R x,R y){return v[x]<v[y]?x:y;}
I pushup(R x){mn[x]=get(x,get(mn[lc],mn[rc]));}
I pushdown(R x){
if(r[x]){
R t=lc;
r[lc=rc]^=1;r[rc=t]^=1;r[x]=0;
}
}
I pushall(R x){
if(nroot(x))pushall(f[x]);
pushdown(x);
}
I rotate(R x){
R y=f[x],z=f[y],k=c[y][1]==x,w=c[x][!k];
if(nroot(y))c[z][c[z][1]==y]=x;c[x][!k]=y;c[y][k]=w;
f[w]=y;f[y]=x;f[x]=z;
pushup(y);
}
I splay(R x){
R y=x;
pushall(x);
while(nroot(x)){
if(nroot(y=f[x]))
rotate((c[y][0]==x)^(c[f[y]][0]==y)?x:y);
rotate(x);
}
pushup(x);
}
I access(R x){
for(R y=0;x;x=f[y=x])
splay(x),rc=y,pushup(x);
}
I mroot(R x){
access(x);splay(x);
r[x]^=1;
}
I link(R i){//卡常版写法
mroot(e[i].u);
f[f[e[i].u]=N+i]=e[i].v;
}
I cut(R x){//也是卡常版写法
access(e[x-N].u);splay(x);
lc=rc=f[lc]=f[rc]=0;
}
int getf(R x){//并查集卡常
if(x==ff[x])return x;
return ff[x]=getf(ff[x]);
}
int main(){
fread(str,1,sizeof(str),stdin);//fread卡常
R n,m,i,x,y,h,cnt,ans,*ini;
register char*q=str-1;
in(n);in(m);
for(i=0;i<=n;++i)
ff[i]=i,v[i]=-1;
//-1放在unsigned里等于是极大值,注意v[0]也改了
for(i=1;i<=m;++i){
in(e[i].u);in(e[i].v);in(e[i].l);
}
sort(e+1,e+m+1);
for(cnt=h=i=1;i<=m;++i){
v[i+N]=e[i].l;
if(getf(x=e[i].u)!=getf(y=e[i].v))
{
vis[i]=1,link(i),ff[ff[x]]=ff[y],++cnt;
if(cnt==n)ans=e[i].l-e[h].l;
//刚完全建好生成树要马上更新答案
}
else{
if(x==y)continue;
vis[i]=1;
mroot(x);
access(y);splay(y);
vis[mn[y]-N]=0;while(!vis[h])++h;//维护好最小边
cut(mn[y]);link(i);
if(cnt==n)ans=min(ans,e[i].l-e[h].l);
}
}
printf("%d\n",ans);
return 0;
}

洛谷P4234 最小差值生成树(LCT,生成树)的更多相关文章

  1. 洛谷P4234 最小差值生成树(lct动态维护最小生成树)

    题目描述 给定一个标号为从 11 到 nn 的.有 mm 条边的无向图,求边权最大值与最小值的差值最小的生成树. 输入输出格式 输入格式:   第一行两个数 n, mn,m ,表示图的点和边的数量. ...

  2. 【刷题】洛谷 P4234 最小差值生成树

    题目描述 给定一个标号为从 \(1\) 到 \(n\) 的.有 \(m\) 条边的无向图,求边权最大值与最小值的差值最小的生成树. 输入输出格式 输入格式: 第一行两个数 \(n, m\) ,表示图的 ...

  3. 洛谷 P4234 最小差值生成树(LCT)

    题面 luogu 题解 LCT 动态树Link-cut tree(LCT)总结 考虑先按边权排序,从小到大加边 如果构成一颗树了,就更新答案 当加入一条边,会形成环. 贪心地想,我们要最大边权-最小边 ...

  4. [洛谷P4234] 最小差值生成树

    题目类型:\(LCT\)动态维护最小生成树 传送门:>Here< 题意:求一棵生成树,其最大边权减最小边权最小 解题思路 和魔法森林非常像.先对所有边进行排序,每次加边的时候删除环上的最小 ...

  5. 洛谷.4234.最小差值生成树(LCT)

    题目链接 先将边排序,这样就可以按从小到大的顺序维护生成树,枚举到一条未连通的边就连上,已连通则(用当前更大的)替换掉路径上最小的边,这样一定不会更差. 每次构成树时更新答案.答案就是当前边减去生成树 ...

  6. 洛谷4234最小差值生成树 (LCT维护生成树)

    这也是一道LCT维护生成树的题. 那么我们还是按照套路,先对边进行排序,然后顺次加入. 不过和别的题有所不同的是: 在本题中,我们需要保证LCT中正好有\(n-1\)条边的时候,才能更新\(ans\) ...

  7. P4234 最小差值生成树

    题目 P4234 最小差值生成树 做法 和这题解法差不多,稍微变了一点,还不懂就直接看代码吧 \(update(2019.2):\)还是具体说一下吧,排序,直接加入,到了成环情况下,显然我们要把此边代 ...

  8. P4234 最小差值生成树 LCT维护边权

    \(\color{#0066ff}{ 题目描述 }\) 给定一个标号为从 \(1\) 到 \(n\) 的.有 \(m\) 条边的无向图,求边权最大值与最小值的差值最小的生成树. \(\color{#0 ...

  9. 洛谷U19464 山村游历(Wander)(LCT,Splay)

    洛谷题目传送门 LCT维护子树信息常见套路详见我的总结 闲话 题目摘自WC模拟试题(by Philipsweng),原题目名Wander,"山村游历"是自己搞出来的中文名. 数据自 ...

随机推荐

  1. Hadoop日记Day16---命令行运行MapReduce程序

    一.代码编写 1.1 单词统计 回顾我们以前单词统计的例子,如代码1.1所示. package counter; import java.net.URI; import org.apache.hado ...

  2. 【转载】VS中的路径宏 vc++中OutDir、ProjectDir、SolutionDir各种路径

    原文:http://www.cnblogs.com/lidabo/archive/2012/05/29/2524170.html 说明 $(RemoteMachine) 设置为“调试”属性页上“远程计 ...

  3. HTML基础之CSS

    CSS选择器 1.id选择器 2.class选择器 3.标签选择器 4.层级选择器(空格) 5.组合选择器(逗号) 6.属性选择器(中括号) <!DOCTYPE html> <htm ...

  4. [CERC2017]Intrinsic Interval[scc+线段树优化建图]

    题意 给定一个长度为 \(n\) 的排列,有 \(q\) 次询问,每次询问一个区间 \([l,r]\) ,找到最小的包含 \([l,r]\) 的区间,满足这个区间包含了一段连续的数字. \(n\leq ...

  5. IT高管和易筋经的故事

    老板是我非常敬重的前领导之一,他的一些管理风格,也影响了后来我对技术团队的管理. 理想企业 什么是程序员理想的IT企业?公司里面有良好的同事关系,合理的产品需求和开发进度,最好老板懂点编程,这样公司更 ...

  6. Jq_select的操作

    jQuery获取Select选择的Text和Value: 语法解释: $("#select_id").change(function(){//code...}); //为Selec ...

  7. RabbitMQ使用注意

    1.通常发布者发布结束后会释放Channel,但是消费者由于是异步监听,消费者的Channel不可以释放,否则就断开连接无法监听. 2.当使用默认配置时,ConnectionFactory不指定Por ...

  8. 4、c++ Arx二次开发创建多段线

    一.本节课程 c++ Arx二次开发创建多段线 二.本节要讲解的知识点 如何应用C++ ARX二次开发创建多段线(AcDbPolyline.AcDb2dPolyLine.AcDb3dPolyline的 ...

  9. C# 导入(读取) WPS ET文件

    本文章介绍基于VS2010 Winform 的WPS2016二次开发 ET数据读取程序 本程序支持多个Sheet页面 前提:引用WPS安装目录下的etapi.dll private void butt ...

  10. PAT甲题题解-1119. Pre- and Post-order Traversals (30)-(根据前序、后序求中序)

    (先说一句,题目还不错,很值得动手思考并且去实现.) 题意:根据前序遍历和后序遍历建树,输出中序遍历序列,序列可能不唯一,输出其中一个即可. 已知前序遍历和后序遍历序列,是无法确定一棵二叉树的,原因在 ...