Description

给出一个N个点M条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点1到点N的最小代价。起点的代价是离开起点的边的边权,终点的代价是进入终点的边的边权

N<=100000

M<=200000

Input

Output

Sample Input

4 5

1 2 5

1 3 2

2 3 1

2 4 4

3 4 8

Sample Output

12

Solution

这种边与边之间有特殊贡献的题目一般都是拆边为点

这题把每条边拆成两个点,把原来的点周围的边拆出的点排序后从权值低的向高的连权值为权值差的边,反向则连权值为 \(0\) 的边

看一看程序画一画就好了

#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
#define REP(a,b,c) for(register int a=(b),a##end=(c);a<=a##end;++a)
#define DEP(a,b,c) for(register int a=(b),a##end=(c);a>=a##end;--a)
const int MAXN=400000+10,MAXM=1000000+10;
const ll inf=1e18;
int n,m,beg[MAXN],nex[MAXM<<1],to[MAXM<<1],was[MAXM<<1],e;
ll d[MAXN];
std::priority_queue< std::pair<ll,int>,std::vector< std::pair<ll,int> >,std::greater< std::pair<ll,int> > > q;
std::vector<int> t;
std::vector< std::pair<int,int> > G[MAXN];
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void insert(int x,int y,int z)
{
to[++e]=y;
nex[e]=beg[x];
beg[x]=e;
was[e]=z;
}
#define ft first
#define sd second
inline bool cmp(std::pair<int,int> A,std::pair<int,int> B)
{
return A.sd<B.sd;
}
inline void build()
{
REP(i,1,n)
{
std::sort(G[i].begin(),G[i].end(),cmp);
REP(j,1,G[i].size()-1)
{
int u=G[i][j].ft,v=G[i][j-1].ft,w=G[i][j].sd-G[i][j-1].sd;
insert(u,v,w);insert(v,u,0);
}
}
}
inline ll Dijkstra()
{
REP(i,1,m<<1|1)d[i]=inf;
REP(i,0,G[1].size()-1)
{
d[G[1][i].ft]=0;
q.push(std::make_pair(0,G[1][i].ft));
}
while(!q.empty())
{
int x=q.top().sd;
if(q.top().ft!=d[x])
{
q.pop();
continue;
}
q.pop();
for(register int i=beg[x];i;i=nex[i])
if(d[to[i]]>d[x]+was[i])
{
d[to[i]]=d[x]+was[i];
q.push(std::make_pair(d[to[i]],to[i]));
}
}
ll ans=inf;
REP(i,0,G[n].size()-1)chkmin(ans,d[G[n][i].ft]+G[n][i].sd);
return ans;
}
#undef ft
#undef sd
int main()
{
read(n);read(m);
REP(i,1,m)
{
int u,v,w;read(u);read(v);read(w);
if(u>v)std::swap(u,v);
insert(i<<1,i<<1^1,w);insert(i<<1^1,i<<1,w);
G[v].push_back(std::make_pair(i<<1^1,w));
G[u].push_back(std::make_pair(i<<1,w));
}
build();
write(Dijkstra(),'\n');
return 0;
}

【刷题】BZOJ 4289 PA2012 Tax的更多相关文章

  1. BZOJ 4289: PA2012 Tax 差分建图 最短路

    https://www.lydsy.com/JudgeOnline/problem.php?id=4289 https://www.cnblogs.com/clrs97/p/5046933.html  ...

  2. bzoj 4289 PA2012 Tax——构图

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4289 可以把一个点上的边按权值排序,然后边权小的向第一个比它大的连差值的边,边权大的向第一个 ...

  3. BZOJ 4289: PA2012 Tax(最短路)

    Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 755  Solved: 240[Submit][Status][Discuss] Descriptio ...

  4. bzoj 4289: PA2012 Tax

    Description 给出一个N个点M条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点1到点N的最小代价.起点的代价是离开起点的边的边权,终点的代价是进入终点的边的边 ...

  5. ●BZOJ 4289 PA2012 Tax

    ●赘述题目 算了,题目没有重复的必要. 注意理解:对答案造成贡献的是每个点,就是了. 举个栗子: 对于如下数据: 2 1 1 2 1 答案是 2: ●题解 方法:建图(难点)+最短路. 先来几个链接: ...

  6. BZOJ.4289.PA2012 Tax(思路 Dijkstra)

    题目链接 \(Description\) 给出一个N个点M条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点1到点N的最小代价.起点的代价是离开起点的边的边权,终点的代价 ...

  7. BZOJ 4289: PA2012 Tax Dijkstra + 查分

    Description 给出一个N个点M条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点1到点N的最小代价.起点的代价是离开起点的边的边权,终点的代价是进入终点的边的边 ...

  8. [BZOJ4289] [PA2012] Tax 解题报告 (最短路+差分建图)

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=4289 4289: PA2012 Tax Time Limit: 10 Sec  Memo ...

  9. 「BZOJ 4289」 PA2012 Tax

    「BZOJ 4289」 PA2012 Tax 题目描述 给出一个 \(N\) 个点 \(M\) 条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点 \(1\) 到点 \( ...

随机推荐

  1. Android Studio常用快捷键 - 转

    Android Studio常用快捷键 1. Ctrl+D: 集合了复制和粘贴两个操作,如果有选中的部分就复制选中的部分,并在选中部分的后面粘贴出来,如果没有选中的部分,就复制光标所在的行,并在此行的 ...

  2. 20155218 Exp1 PC平台逆向破解(5)M

    20155218 Exp1 PC平台逆向破解(5)M 1. 掌握NOP.JNE.JE.JMP.CMP汇编指令的机器码 NOP:NOP指令即"空指令".执行到NOP指令时,CPU什么 ...

  3. [2016北京集训试题15]cot-[分块]

    Description Solution 如图,假如我们知道了以任何一个点为顶点的135-180度的前缀和和90-180度的前缀和,我们就可以搞出三角形的面积. 差分.add[i][j]和dev[i] ...

  4. java maven项目迁移时缺失jar包 或者 maven jar包缺失时的解决方案

    这样弄完,jar包就都下载好了,就不缺失了. 从GitHub上checkout一个项目下来,导入idea后发现加载依赖奇慢无比,所以临时把网络调成FQ的代理,结果会发现idea会停止之前的下载,那怎么 ...

  5. SSRS配置2:加密管理

    在初始化Reporting Service时,SSRS会自动创建数据库[ReportServer],用于存储报表元数据,报表订阅,以及凭证(Credential)和连接信息等身份验证信息,身份验证数据 ...

  6. 设计模式 笔记 模版方法模式 Template Method

    //---------------------------15/04/28---------------------------- //TemplateMethod 模版方法模式----类行为型模式 ...

  7. 前端项目模块化的实践3:使用 TypeScript 的收益

    以下是关于前端项目模块化的实践,包含以下内容: 搭建 NPM 私有仓库管理源码及依赖: 使用 Webpack 打包基础设施代码: 使用 TypeScript 编写可靠类库 使用 TypeScript ...

  8. C#_Winfrom将浏览器生成Image

    using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...

  9. Asp.Net_的传值跟存储值操作

    页面传值是学习asp.net初期都会面临的一个问题,总的来说有页面传值.存储对象传值.ajax.类.model.表单等.但是一般来说,常用的较简单有QueryString,Session,Cookie ...

  10. 萌新程序媛的首个作品,基于NoSQL的内容管理及低码开发平台

    尽管入行有一段时间了,但之前还从来没想过要开发一款完整的软件产品.这个我跟朋友开发的第一款软件,希望大家帮我们多宣传推广.首个版本肯定有很多的不足,大家也给我们多提意见,还有很多规划中的功能要在之后的 ...