分形之康托(Cantor)三分集
1883年,德国数学家康托(G.Cantor)提出了如今广为人知的三分康托集,或称康托尔集。三分康托集是很容易构造的,然而,它却显示出许多最典型的分形特征。它是从单位区间出发,再由这个区间不断地去掉部分子区间的过程。
三分康托集的构造过程是:
第一步,把闭区间[0,1]平均分为三段,去掉中间的 1/3 部分段,则只剩下两个闭区间[0,1/3]和[2/3,1]。
第二步,再将剩下的两个闭区间各自平均分为三段,同样去掉中间的区间段,这时剩下四段闭区间:[0,1/9],[2/9,1/3],[2/3,7/9]和[8/9,1]。
第三步,重复删除每个小区间中间的 1/3 段。如此不断的分割下去, 最后剩下的各个小区间段就构成了三分康托集。
其实三分Cantor集的构造本身就具有严格的自相似的结构,并且具有无穷小的细节,我们可以说三分Cantor集就是分形集。当时,Cantor是为了证明级数中的一些定理引进的,由于它的一些奇异的性质,被当时看作集合中的另类,从而忽视了Cantor集的重要性。如今Cantor集经常在混沌和分形的研究中遇到。既然它是分形,那么它的维数将可以采用前面讲述的方法进行计算。因为它有严格的自相似结构,如果按比例缩小1/3,则它相当于两个原来相似整体。
Cantor集是一种最简单的分形方式,无非是不停地将一条线段变成两条小点的线段,核心代码如下:
static void FractalCanto(const Vector3& vStart, const Vector3& vEnd, Yreal length, Yreal stepY, Vector3* pVertices)
{
Vector3 vSub = vEnd - vStart; pVertices[] = vStart;
pVertices[] = vStart + vSub*length;
pVertices[] = vEnd - vSub*length;
pVertices[] = vEnd; for (Yuint i = ; i < ; i++)
{
pVertices[i].y += stepY;
}
}
程序中可以任意设置实线的分裂比例,而不是严格意义上的三等分:
可以以3D的视角观察图形:
分形之康托(Cantor)三分集的更多相关文章
- cantor三分集
值得一提的是,第一次听说cantor三分集是在数字电路课上,然而数电是我最不喜欢的课程之一...... 分形大都具有自相似.自仿射性质,所以cantor三分集用递归再合适不过了,本来不想用matlab ...
- [实变函数]2.5 Cantor 三分集
1 Cantor 三分集的构造: $$\bex P=\cap_{n=1}^\infty F_n. \eex$$ 2 Cantor 三分 ...
- 18个分形图形的GIF动画演示
这里提供18个几何线段分形的GIF动画图像.图形颜色是白色,背景色为黑色,使用最基本的黑与白以表现分形图形. (1)科赫(Koch)雪花 (2)列维(levy)曲线 (3)龙形曲线(Drago ...
- Altium 分形天线设计
Altium 分形天线设计 程序运行界面 Cantor三分集 Koch雪花 Sierpinski垫片 源代码: Iter_Num = 4 'diedai PI = 3.1415926 Call ...
- 关于 Cantor 集不可数的新观点
第一步操作:将区间 $[0,1]$ 中去掉开区间 $(\frac{1}{3},\frac{2}{3})$ 后,就形成了两个不交闭区间.于是这两个不交闭区间中至少有两个元素,正好是集合 $\{1\}$ ...
- Python 分形算法__代码里开出来的艺术之花
1. 前言 分形几何是几何数学中的一个分支,也称大自然几何学,由著名数学家本华曼德勃罗( 法语:BenoitB.Mandelbrot)在 1975 年构思和发展出来的一种新的几何学. 分形几何是对大自 ...
- hihoCoder #1312 : 搜索三·启发式搜索(A*, 康托展开)
原题网址:http://hihocoder.com/problemset/problem/1312 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 在小Ho的手机上有 ...
- 康托展开+逆展开(Cantor expension)详解+优化
康托展开 引入 康托展开(Cantor expansion)用于将排列转换为字典序的索引(逆展开则相反) 百度百科 维基百科 方法 假设我们要求排列 5 2 4 1 3 的字典序索引 逐位处理: 第一 ...
- 康托(Cantor)展开
直接进入正题. 康托展开 Description 现在有"ABCDEFGHIJ”10个字符,将其所有的排列中按字典序排列,给出任意一种排列,说出这个排列在所有的排列中是第几小的? Input ...
随机推荐
- Linux下使用rsync最快速删除海量文件的方法
常用的删除命令rm -fr * 就不好用了,因为要等待的时间太长.所以必须要采取一些非常手段.我们可以使用rsync来实现快速删除大量文件. 1.先安装rsync: yum install rsyn ...
- QT学习之路(1):彩票绝对不中模拟器
//============================================//绝对不中,彩票开奖模拟器#include "mainwindow.h"#includ ...
- PHP图片处理库Grafika详细教程
转载自51CTO 开发频道 1.图像基本处理:http://developer.51cto.com/art/201611/520928.htm 2.图像特效处理模块:http://developer. ...
- nginx fastcgi负载均衡
当后端某机器无法连接,或者处理fastcgi请求时异常退出,nginx会将fastcgi请求发送到另外一台机器. 配置文件 http { include mime.types; default_typ ...
- python入门之文件处理
1.读取文件 f=open(file="C:\BiZhi\新建文本文档.txt",mode="r",encoding="utf-8") da ...
- HBuilder中ios打包
参考:http://ask.dcloud.net.cn/article/152 在ios端钥匙串双击(教程上是双击)导入证书时候,可能会报错,直接把证书文件拖入到keychain的登录里就解决了. 1 ...
- PL/SQL Developer 导出csv文件,用excel打开中文显示乱码
用PL/SQL Developer的导出csv功能把sql语句的查询结果导出到一个csv文件.这个sql查询的结果里面有中文,最后用execel打开的时候发现中文全部是乱码. 方法 1 导出csv ...
- Hadoop3集群搭建之——hive安装
Hadoop3集群搭建之——虚拟机安装 Hadoop3集群搭建之——安装hadoop,配置环境 Hadoop3集群搭建之——配置ntp服务 Hadoop3集群搭建之——hbase安装及简单操作 现在到 ...
- Github 快速上手实战教程
一.实验介绍 1.1 实验内容 本次课程讲的是在实验楼的在线环境中,如何使用 Github 去管理在在线环境中使用的代码.配置.资源等实验相关文件,怎样去添加.同步和下拉在远程仓库中的实验文件,以此来 ...
- JS将时间戳转化为时间
//将时间戳转化为时间 function timestampToTime(timestamp) { var date = new Date(timestamp * 1000);//时间戳为10位需*1 ...