问题

旅行商问题(Traveling Salesman Problem,TSP)是旅行商要到若干个城市旅行,各城市之间的费用是已知的,为了节省费用,旅行商决定从所在城市出发,到每个城市旅行一次后返回初始城市,问他应选择什么样的路线才能使所走的总费用最短?

分析

此问题可描述如下:G=(V,E)是带权的有向图,找到包含V中每个结点一个有向环,亦即一条周游路线,使得这个有向环上所有边成本之和最小。

这个问题与前一篇文章的区别就是,本题是带权的图。只要一点小小的修改即可。

解的长度是固定的n+1。

对图中的每一个节点,都有自己的邻接节点。对某个节点而言,其所有的邻接节点构成这个节点的状态空间。当路径到达这个节点时,遍历其状态空间。

最终,一定可以找到最优解!

显然,继续套用回溯法子集树模板!!!

代码


'''旅行商问题(Traveling Salesman Problem,TSP)''' # 用邻接表表示带权图
n = 5 # 节点数
a,b,c,d,e = range(n) # 节点名称
graph = [
{b:7, c:6, d:1, e:3},
{a:7, c:3, d:7, e:8},
{a:6, b:3, d:12, e:11},
{a:1, b:7, c:12, e:2},
{a:3, b:8, c:11, d:2}
] x = [0]*(n+1) # 一个解(n+1元数组,长度固定)
X = [] # 一组解 best_x = [0]*(n+1) # 已找到的最佳解(路径)
min_cost = 0 # 最小旅费 # 冲突检测
def conflict(k):
global n,graph,x,best_x,min_cost # 第k个节点,是否前面已经走过
if k < n and x[k] in x[:k]:
return True # 回到出发节点
if k == n and x[k] != x[0]:
return True # 前面部分解的旅费之和超出已经找到的最小总旅费
cost = sum([graph[node1][node2] for node1,node2 in zip(x[:k], x[1:k+1])])
if 0 < min_cost < cost:
return True return False # 无冲突 # 旅行商问题(TSP)
def tsp(k): # 到达(解x的)第k个节点
global n,a,b,c,d,e,graph,x,X,min_cost,best_x if k > n: # 解的长度超出,已走遍n+1个节点 (若不回到出发节点,则 k==n)
cost = sum([graph[node1][node2] for node1,node2 in zip(x[:-1], x[1:])]) # 计算总旅费
if min_cost == 0 or cost < min_cost:
best_x = x[:]
min_cost = cost
#print(x)
else:
for node in graph[x[k-1]]: # 遍历节点x[k-1]的邻接节点(状态空间)
x[k] = node
if not conflict(k): # 剪枝
tsp(k+1) # 测试
x[0] = c # 出发节点:路径x的第一个节点(随便哪个)
tsp(1) # 开始处理解x中的第2个节点
print(best_x)
print(min_cost)

效果图

python 回溯法 子集树模板 系列 —— 9、旅行商问题(TSP)的更多相关文章

  1. python 回溯法 子集树模板 系列 —— 18、马踏棋盘

    问题 将马放到国际象棋的8*8棋盘board上的某个方格中,马按走棋规则进行移动,走遍棋盘上的64个方格,要求每个方格进入且只进入一次,找出一种可行的方案. 分析 说明:这个图是5*5的棋盘. 图片来 ...

  2. python 回溯法 子集树模板 系列 —— 17、找零问题

    问题 有面额10元.5元.2元.1元的硬币,数量分别为3个.5个.7个.12个.现在需要给顾客找零16元,要求硬币的个数最少,应该如何找零?或者指出该问题无解. 分析 元素--状态空间分析大法:四种面 ...

  3. python 回溯法 子集树模板 系列 —— 16、爬楼梯

    问题 某楼梯有n层台阶,每步只能走1级台阶,或2级台阶.从下向上爬楼梯,有多少种爬法? 分析 这个问题之前用分治法解决过.但是,这里我要用回溯法子集树模板解决它. 祭出元素-状态空间分析大法:每一步是 ...

  4. python 回溯法 子集树模板 系列 —— 15、总结

    作者:hhh5460 时间:2017年6月3日 用回溯法子集树模板解决了这么多问题,这里总结一下使用回溯法子集树模板的步骤: 1.确定元素及其状态空间(精髓) 对每一个元素,遍历它的状态空间,其它的事 ...

  5. python 回溯法 子集树模板 系列 —— 14、最长公共子序列(LCS)

    问题 输入 第1行:字符串A 第2行:字符串B (A,B的长度 <= 1000) 输出 输出最长的子序列,如果有多个,随意输出1个. 输入示例 belong cnblogs 输出示例 blog ...

  6. python 回溯法 子集树模板 系列 —— 10、m着色问题

    问题 图的m-着色判定问题 给定无向连通图G和m种不同的颜色.用这些颜色为图G的各顶点着色,每个顶点着一种颜色,是否有一种着色法使G中任意相邻的2个顶点着不同颜色? 图的m-着色优化问题 若一个图最少 ...

  7. python 回溯法 子集树模板 系列 —— 8、图的遍历

    问题 一个图: A --> B A --> C B --> C B --> D B --> E C --> A C --> D D --> C E -- ...

  8. python 回溯法 子集树模板 系列 —— 3、0-1背包问题

    问题 给定N个物品和一个背包.物品i的重量是Wi,其价值位Vi ,背包的容量为C.问应该如何选择装入背包的物品,使得放入背包的物品的总价值为最大? 分析 显然,放入背包的物品,是N个物品的所有子集的其 ...

  9. python 回溯法 子集树模板 系列 —— 13、最佳作业调度问题

    问题 给定 n 个作业,每一个作业都有两项子任务需要分别在两台机器上完成.每一个作业必须先由机器1 处理,然后由机器2处理. 试设计一个算法找出完成这n个任务的最佳调度,使其机器2完成各作业时间之和达 ...

随机推荐

  1. She Left Her Shoes

    She left her shoes, she took everything else, her toothbrush, her clothes, and even that stupid litt ...

  2. Mac逆向--思维导图

  3. centos 7 linux x64

    1.修改软件源 sudo wget -O /etc/yum.repos.d/epel.repo http://mirrors.aliyun.com/repo/epel-7.repo yum updat ...

  4. 巧用foxmail同步qq邮箱的通讯录

    如果您企业使用的qq企业邮箱,那么你在web端登陆邮箱并填写收件人时,发现QQ邮箱是可以自动完成,并且中文名称自动完成. 如何在使用foxmail邮件客户端的情况下也同步这些邮箱信息呢?需要七步,看截 ...

  5. NoSQL数据库的认识

    SQL数据库和NoSQL数据库介绍 什么是SQL数据库? 关系型数据库是依据关系模型来创建的数据库.而所谓的关系模型就是“一对一.一对多.多对多”等关系模型,这是一种二维表格模型,因此一个关系型数据库 ...

  6. mysql5.7 误删管理员root账户

    1.停止数据库,并在mysql配置文件my.cnf中添加skip-grant-tables参数到[mysqld]配置块中 2. 执行 systemctl start mysqld 3. 执行 mysq ...

  7. Mac如何搭建 配置 virtualenv python虚拟环境(超级详细,适合小白)

    首先去python官网 下载python3的 安装包安装: https://www.python.org/ftp/python/3.6.5/python-3.6.5-macosx10.9.pkg 安装 ...

  8. 团队作业——Beta冲刺4

    团队作业--Beta冲刺 冲刺任务安排 杨光海天 今日任务:在同队成员帮助下,完成了浏览详情界面的跳转,以及图片的嵌入 明日任务:继续完成浏览详情界面 吴松青 今日任务:研究图片详情界面后端函数,遇到 ...

  9. 浅析Java虚拟机结构与机制[转]

    本文旨在给所有希望了解JVM(Java Virtual Machine)的同学一个概念性的入门,主要介绍了JVM的组成部分以及它们内部工作的机制和原理.当然本文只是一个简单的入门,不会涉及过多繁杂的参 ...

  10. docker devicemapper 问题

    DOCKER_OPTS= "--storage-driver=devicemapper  --storage-opt  dm.basesize=50G --storage-opt dm.da ...