这是CS190.1x第一次作业,主要教你如何使用numpy。numpy可以说是python科学计算的基础包了,用途非常广泛。相关ipynb文件见我github

这次作业主要分成5个部分,分别是:数学复习,numpy介绍,numpy和线性代数,lambda表达式和CTR预览(lab4的内容,不明白有什么意义,略过)

Part 1 Math review

第一部分主要介绍了线性代数的知识,包括向量的加减乘除和矩阵的加减乘除,代码也不用贴了。

Part 2 NumPy

numpy是python用于向量计算的包,它对向量和矩阵计算提供了非常好的接口,而且对速度和内存的优化也做的非常好。本部分会详细的介绍numpy。

Scalar multiplication

向量与常数相乘

# It is convention to import NumPy with the alias np
import numpy as np
# TODO: Replace <FILL IN> with appropriate code
# Create a numpy array with the values 1, 2, 3
simpleArray = np.array([1,2,3])
# Perform the scalar product of 5 and the numpy array
timesFive = 5 * simpleArray
print simpleArray
print timesFive

Element-wise multiplication and dot product

numpy提供了元素相乘和点乘

# TODO: Replace <FILL IN> with appropriate code
# Create a ndarray based on a range and step size.
u = np.arange(0, 5, .5)
v = np.arange(5, 10, .5) elementWise = u * v
dotProduct = np.dot(u,v)
print 'u: {0}'.format(u)
print 'v: {0}'.format(v)
print '\nelementWise\n{0}'.format(elementWise)
print '\ndotProduct\n{0}'.format(dotProduct)

Matrix math

numpy提供了矩阵的转置,点乘,求逆运算

# TODO: Replace <FILL IN> with appropriate code
from numpy.linalg import inv A = np.matrix([[1,2,3,4],[5,6,7,8]])
print 'A:\n{0}'.format(A)
# Print A transpose
print '\nA transpose:\n{0}'.format(A.T) # Multiply A by A transpose
AAt = A.dot(np.matrix.transpose(A))
print '\nAAt:\n{0}'.format(AAt) # Invert AAt with np.linalg.inv()
AAtInv = inv(AAt)
print '\nAAtInv:\n{0}'.format(AAtInv) # Show inverse times matrix equals identity
# We round due to numerical precision
print '\nAAtInv * AAt:\n{0}'.format((AAtInv * AAt).round(4))

Part 3 Additional NumPy and Spark linear algebra

Slices

熟悉python的list的人对这个应该不陌生。

# TODO: Replace <FILL IN> with appropriate code
features = np.array([1, 2, 3, 4])
print 'features:\n{0}'.format(features) # The last three elements of features
lastThree = features[-3:] print '\nlastThree:\n{0}'.format(lastThree)

Combining ndarray objects

这里介绍np.hstack():按照列来合并; np.vstack():按照行来合并。

# TODO: Replace <FILL IN> with appropriate code
zeros = np.zeros(8)
ones = np.ones(8)
print 'zeros:\n{0}'.format(zeros)
print '\nones:\n{0}'.format(ones) zerosThenOnes = np.hstack((zeros,ones)) # A 1 by 16 array
zerosAboveOnes = np.vstack((zeros,ones)) # A 2 by 8 array print '\nzerosThenOnes:\n{0}'.format(zerosThenOnes)
print '\nzerosAboveOnes:\n{0}'.format(zerosAboveOnes)

PySpark's DenseVector

PySpark提供了DenseVector(在pyspark.mllib.lianlg)来存储数组,这和numpy有点类似。

from pyspark.mllib.linalg import DenseVector
# TODO: Replace <FILL IN> with appropriate code
numpyVector = np.array([-3, -4, 5])
print '\nnumpyVector:\n{0}'.format(numpyVector) # Create a DenseVector consisting of the values [3.0, 4.0, 5.0]
myDenseVector = DenseVector([3.0, 4.0, 5.0])
# Calculate the dot product between the two vectors.
denseDotProduct = myDenseVector.dot(numpyVector) print 'myDenseVector:\n{0}'.format(myDenseVector)
print '\ndenseDotProduct:\n{0}'.format(denseDotProduct)

Part 4 Python lambda expressions

lambda之前出现了这么多次,不明白为啥才讲。。。囧。讲lambda的博客也是特别多,大家有兴趣可以搜搜看。

# Example function
def addS(x):
return x + 's'
print type(addS)
print addS
print addS('cat') # As a lambda
addSLambda = lambda x: x + 's'
print type(addSLambda)
print addSLambda
print addSLambda('cat') # TODO: Replace <FILL IN> with appropriate code
# Recall that: "lambda x, y: x + y" creates a function that adds together two numbers
multiplyByTen = lambda x: x * 10
print multiplyByTen(5) # Note that the function still shows its name as <lambda>
print '\n', multiplyByTen

lambda fewer steps than def

这里给出了lamda比def要灵活的例子

# Code using def that we will recreate with lambdas
def plus(x, y):
return x + y def minus(x, y):
return x - y functions = [plus, minus]
print functions[0](4, 5)
print functions[1](4, 5) # TODO: Replace <FILL IN> with appropriate code
# The first function should add two values, while the second function should subtract the second
# value from the first value.
lambdaFunctions = [lambda x,y : x+y , lambda x,y : x-y]
print lambdaFunctions[0](4, 5)
print lambdaFunctions[1](4, 5)

Lambda expression arguments

这一部分应该是说lambda的入参不一样,但是效果一样

# Examples.  Note that the spacing has been modified to distinguish parameters from tuples.

# One-parameter function
a1 = lambda x: x[0] + x[1]
a2 = lambda (x0, x1): x0 + x1
print 'a1( (3,4) ) = {0}'.format( a1( (3,4) ) )
print 'a2( (3,4) ) = {0}'.format( a2( (3,4) ) ) # Two-parameter function
b1 = lambda x, y: (x[0] + y[0], x[1] + y[1])
b2 = lambda (x0, x1), (y0, y1): (x0 + y0, x1 + y1)
print '\nb1( (1,2), (3,4) ) = {0}'.format( b1( (1,2), (3,4) ) )
print 'b2( (1,2), (3,4) ) = {0}'.format( b2( (1,2), (3,4) ) ) # TODO: Replace <FILL IN> with appropriate code
# Use both syntaxes to create a function that takes in a tuple of two values and swaps their order
# E.g. (1, 2) => (2, 1)
swap1 = lambda x: (x[1],x[0])
swap2 = lambda (x0, x1): (x1,x0)
print 'swap1((1, 2)) = {0}'.format(swap1((1, 2)))
print 'swap2((1, 2)) = {0}'.format(swap2((1, 2))) # Using either syntax, create a function that takes in a tuple with three values and returns a tuple
# of (2nd value, 3rd value, 1st value). E.g. (1, 2, 3) => (2, 3, 1)
swapOrder = lambda x:(x[1],x[2],x[0])
print 'swapOrder((1, 2, 3)) = {0}'.format(swapOrder((1, 2, 3))) # Using either syntax, create a function that takes in three tuples each with two values. The
# function should return a tuple with the values in the first position summed and the values in the
# second position summed. E.g. (1, 2), (3, 4), (5, 6) => (1 + 3 + 5, 2 + 4 + 6) => (9, 12)
sumThree = lambda x,y,z :(x[0]+y[0]+z[0],x[1]+y[1]+z[1])
print 'sumThree((1, 2), (3, 4), (5, 6)) = {0}'.format(sumThree((1, 2), (3, 4), (5, 6)))

Functional programming

# Create a class to give our examples the same syntax as PySpark
class FunctionalWrapper(object):
def __init__(self, data):
self.data = data
def map(self, function):
"""Call `map` on the items in `data` using the provided `function`"""
return FunctionalWrapper(map(function, self.data))
def reduce(self, function):
"""Call `reduce` on the items in `data` using the provided `function`"""
return reduce(function, self.data)
def filter(self, function):
"""Call `filter` on the items in `data` using the provided `function`"""
return FunctionalWrapper(filter(function, self.data))
def __eq__(self, other):
return (isinstance(other, self.__class__)
and self.__dict__ == other.__dict__)
def __getattr__(self, name): return getattr(self.data, name)
def __getitem__(self, k): return self.data.__getitem__(k)
def __repr__(self): return 'FunctionalWrapper({0})'.format(repr(self.data))
def __str__(self): return 'FunctionalWrapper({0})'.format(str(self.data)) # Map example # Create some data
mapData = FunctionalWrapper(range(5)) # Define a function to be applied to each element
f = lambda x: x + 3 # Imperative programming: loop through and create a new object by applying f
mapResult = FunctionalWrapper([]) # Initialize the result
for element in mapData:
mapResult.append(f(element)) # Apply f and save the new value
print 'Result from for loop: {0}'.format(mapResult) # Functional programming: use map rather than a for loop
print 'Result from map call: {0}'.format(mapData.map(f)) # Note that the results are the same but that the map function abstracts away the implementation
# and requires less code # TODO: Replace <FILL IN> with appropriate code
dataset = FunctionalWrapper(range(10)) # Multiply each element by 5
mapResult = dataset.map(lambda x :x*5)
# Keep the even elements
# Note that "x % 2" evaluates to the remainder of x divided by 2
filterResult = dataset.filter(lambda x : x%2==0)
# Sum the elements
reduceResult = dataset.reduce(lambda x,y: x+y) print 'mapResult: {0}'.format(mapResult)
print '\nfilterResult: {0}'.format(filterResult)
print '\nreduceResult: {0}'.format(reduceResult)

Composability

# Example of a mult-line expression statement
# Note that placing parentheses around the expression allow it to exist on multiple lines without
# causing a syntax error.
(dataset
.map(lambda x: x + 2)
.reduce(lambda x, y: x * y)) # TODO: Replace <FILL IN> with appropriate code
# Multiply the elements in dataset by five, keep just the even values, and sum those values
finalSum = dataset.map(lambda x :x*5).filter(lambda x : x%2==0).reduce(lambda x,y: x+y)
print finalSum

CS190.1x-ML_lab1_review_student的更多相关文章

  1. CS190.1x Scalable Machine Learning

    这门课是CS100.1x的后续课,看课程名字就知道这门课主要讲机器学习.难度也会比上一门课大一点.如果你对这门课感兴趣,可以看看我这篇博客,如果对PySpark感兴趣,可以看我分析作业的博客. Cou ...

  2. Introduction to Big Data with PySpark

    起因 大数据时代 大数据最近太热了,其主要有数据量大(Volume),数据类别复杂(Variety),数据处理速度快(Velocity)和数据真实性高(Veracity)4个特点,合起来被称为4V. ...

  3. Ubuntu16.04 802.1x 有线连接 输入账号密码,为什么连接不上?

    ubuntu16.04,在网络配置下找到802.1x安全性,输入账号密码,为什么连接不上?   这是系统的一个bug解决办法:假设你有一定的ubuntu基础,首先你先建立好一个不能用的协议,就是按照之 ...

  4. 解压版MySQL5.7.1x的安装与配置

    解压版MySQL5.7.1x的安装与配置 MySQL安装文件分为两种,一种是msi格式的,一种是zip格式的.如果是msi格式的可以直接点击安装,按照它给出的安装提示进行安装(相信大家的英文可以看懂英 ...

  5. RTImageAssets 自动生成 AppIcon 和 @2x @1x 比例图片

    下载地址:https://github.com/rickytan/RTImageAssets 此插件用来生成 @3x 的图片资源对应的 @2x 和 @1x 版本,只要拖拽高清图到 @3x 的位置上,然 ...

  6. 802.1x协议&eap类型

    EAP: 0,扩展认证协议 1,一个灵活的传输协议,用来承载任意的认证信息(不包括认证方式) 2,直接运行在数据链路层,如ppp或以太网 3,支持多种类型认证 注:EAP 客户端---服务器之间一个协 ...

  7. 脱壳脚本_手脱壳ASProtect 2.1x SKE -&gt; Alexey Solodovnikov

    脱壳ASProtect 2.1x SKE -> Alexey Solodovnikov 用脚本.截图 1:查壳 2:od载入 3:用脚本然后打开脚本文件Aspr2.XX_unpacker_v1. ...

  8. iOS图片攻略之:有3x自动生成2x 1x图片

       关键字:Xcode插件,生成图片资源 代码类库:其他(Others) GitHub链接:https://github.com/rickytan/RTImageAssets   本项目是一个 Xc ...

  9. Keil V4.72升级到V5.1X之后

    问题描述 Keil V4.72升级到V5.1x之后,原来编译通过的工程,出现了如下错误: .\Libraries\CMSIS\CM3\DeviceSupport\ST\STM32F10x\STM32f ...

随机推荐

  1. JSON教程基础

    一.基础简介 二.JSON 语法 三.JSON 使用 一.基础简介 1.JSON:JavaScript 对象表示法(JavaScript Object Notation). JSON 是存储和交换文本 ...

  2. Json 操作

    Json简介: JSON(JavaScript Object Notation, JS 对象简谱) 是一种轻量级的数据交换格式.它基于 ECMAScript (欧洲计算机协会制定的js规范)的一个子集 ...

  3. SQLServer的TDE加密

    TDE的主要作用是防止数据库备份或数据文件被偷了以后,偷数据库备份或文件的人在没有数据加密密钥的情况下是无法恢复或附加数据库的. 首先创建SQL Server中master系统数据库的MASTER K ...

  4. cisco查看机框 板卡 电源 SN 风扇环境运行状态和一些常用命令 巡检命令

    查看设备运行环境及状态 show environment 查看设备环境show environment temperature --查设备温度 show environment fans --查看设备 ...

  5. 设计一个 Java 程序,自定义异常类,从命令行(键盘)输入一个字符串,如果该字符串值为“XYZ”。。。

    设计一个 Java 程序,自定义异常类,从命令行(键盘)输入一个字符串,如果该字符串值为“XYZ”,则抛出一个异常信息“This is a XYZ”,如果从命令行输入 ABC,则没有抛出异常.(只有 ...

  6. 【第一次玩Travis CI】终于弄好了我的马鸭

    真是不容易,我都要哭了.熬了半天终于弄完了!! 终于可以坐这儿挺会小曲,写写感受了. 作为一个程序写的不咋滴的程序员,倒是特别喜欢写博客,也是绝了. 高三的时候,用OneNote,后来转到Lofter ...

  7. NOIP2018考前抱佛脚——数据结构基础及STL实现

    目录 动态数组 栈 队列 优先队列 动态数组 srand(time(0)); std::vector<int> qwq; for(int i = 1;i <= 10;++i) qwq ...

  8. MySql详解(一)

    MySql详解(一) 作为一名Java开发人员,数据库的地位不用多说了.从大学时期的SqlServer,到现在最流行的MySql和Oracle.前者随着阿里巴巴的去IOE化,在互联网公司中的使用比例是 ...

  9. Android APP的字体设置

    Android系统自带有对字体的设置,这些设置是对字体的显示方式的设置,比如加粗,倾斜,下划线,字号等,但是对于字体本身,比如设置为楷体,隶书等貌似没有.Android系统只有一种默认的,如果需要修改 ...

  10. mysql中find_in_set结合GROUP_CONCAT使用

    SELECT stationid from sys_workstation where FIND_IN_SET(stationid,(SELECT GROUP_CONCAT(opera_area) f ...