Two Rabbits

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 505    Accepted Submission(s): 260

Problem Description
Long long ago, there lived two rabbits Tom and Jerry in the forest. On a sunny afternoon, they planned to play a game with some stones. There were n stones on the ground and they were arranged as a clockwise ring. That is to say, the first stone was adjacent to the second stone and the n-th stone, and the second stone is adjacent to the first stone and the third stone, and so on. The weight of the i-th stone is ai.

The rabbits jumped from one stone to another. Tom always jumped clockwise, and Jerry always jumped anticlockwise.

At the beginning, the rabbits both choose a stone and stand on it. Then at each turn, Tom should choose a stone which have not been stepped by itself and then jumped to it, and Jerry should do the same thing as Tom, but the jumping direction is anti-clockwise.

For some unknown reason, at any time , the weight of the two stones on which the two rabbits stood should be equal. Besides, any rabbit couldn't jump over a stone which have been stepped by itself. In other words, if the Tom had stood on the second stone, it cannot jump from the first stone to the third stone or from the n-the stone to the 4-th stone.

Please note that during the whole process, it was OK for the two rabbits to stand on a same stone at the same time.

Now they want to find out the maximum turns they can play if they follow the optimal strategy.

 
Input
The input contains at most 20 test cases.
For each test cases, the first line contains a integer n denoting the number of stones.
The next line contains n integers separated by space, and the i-th integer ai denotes the weight of the i-th stone.(1 <= n <= 1000, 1 <= ai <= 1000)
The input ends with n = 0.
 
Output
For each test case, print a integer denoting the maximum turns.
 
Sample Input
1
1
4
1 1 2 1
6
2 1 1 2 1 3
0
 
Sample Output
1
4
5

Hint

For the second case, the path of the Tom is 1, 2, 3, 4, and the path of Jerry is 1, 4, 3, 2.
For the third case, the path of Tom is 1,2,3,4,5 and the path of Jerry is 4,3,2,1,5.

 
Source
 
Recommend
liuyiding
 

答案竟然就是分成两部分以后的最长回文子串,

太难想到了,TAT

 /* ***********************************************
Author :kuangbin
Created Time :2013/9/15 星期日 15:20:03
File Name :2013杭州网络赛\1008.cpp
************************************************ */ #pragma comment(linker, "/STACK:1024000000,1024000000")
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
#define REP(I, N) for (int I=0;I<int(N);++I)
#define FOR(I, A, B) for (int I=int(A);I<int(B);++I)
#define DWN(I, B, A) for (int I=int(B-1);I>=int(A);--I)
#define REP_1(I, N) for (int I=1;I<=int(N);++I)
#define FOR_1(I, A, B) for (int I=int(A);I<=int(B);++I)
#define DWN_1(I, B, A) for (int I=int(B);I>=int(A);--I)
#define REP_C(I, N) for (int N____=int(N),I=0;I<N____;++I)
#define FOR_C(I, A, B) for (int B____=int(B),I=A;I<B____;++I)
#define DWN_C(I, B, A) for (int A____=int(A),I=B-1;I>=A____;--I)
#define REP_1_C(I, N) for (int N____=int(N),I=1;I<=N____;++I)
#define FOR_1_C(I, A, B) for (int B____=int(B),I=A;I<=B____;++I)
#define DWN_1_C(I, B, A) for (int A____=int(A),I=B;I>=A____;--I)
#define DO(N) while(N--)
#define DO_C(N) int N____ = N; while(N____--)
#define TO(i, a, b) int s_=a<b?1:-1,b_=b+s_;for(int i=a;i!=b_;i+=s_)
#define TO_1(i, a, b) int s_=a<b?1:-1,b_=b;for(int i=a;i!=b_;i+=s_)
#define SQZ(I, J, A, B) for (int I=int(A),J=int(B)-1;I<J;++I,--J)
#define SQZ_1(I, J, A, B) for (int I=int(A),J=int(B);I<=J;++I,--J) const int MAXN = ;
int a[MAXN];
int dp[MAXN][MAXN];
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int n;
while(scanf("%d",&n) == && n)
{
for(int i = ;i <= n;i++)
scanf("%d",&a[i]);
memset(dp,,sizeof(dp));
for(int i = ;i <= n;i++)dp[i][i] = ;
for(int k = ;k <= n;k++)
for(int i = ;i + k <= n;i++)
{
dp[i][i+k] = max(dp[i+][i+k],dp[i][i+k-]);
if(a[i] == a[i+k])dp[i][i+k] = max(dp[i][i+k],+dp[i+][i+k-]);
}
int ans = ;
for(int i = ;i <= n;i++)
ans = max(ans,dp[][i]+dp[i+][n]);
printf("%d\n",ans);
}
return ;
}

HDU 4745 Two Rabbits (2013杭州网络赛1008,最长回文子串)的更多相关文章

  1. HDU 4747 Mex (2013杭州网络赛1010题,线段树)

    Mex Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total Submis ...

  2. HDU 4741 Save Labman No.004 (2013杭州网络赛1004题,求三维空间异面直线的距离及最近点)

    Save Labman No.004 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  3. HDU 4739 Zhuge Liang's Mines (2013杭州网络赛1002题)

    Zhuge Liang's Mines Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  4. HDU 4738 Caocao's Bridges (2013杭州网络赛1001题,连通图,求桥)

    Caocao's Bridges Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  5. 最长回文子串(百度笔试题和hdu 3068)

    版权所有.所有权利保留. 欢迎转载,转载时请注明出处: http://blog.csdn.net/xiaofei_it/article/details/17123559 求一个字符串的最长回文子串.注 ...

  6. hdu 3068 最长回文(manachar求最长回文子串)

    题目连接:hdu 3068 最长回文 解题思路:通过manachar算法求最长回文子串,如果用遍历的话绝对超时. #include <stdio.h> #include <strin ...

  7. HDU 4768 Flyer (2013长春网络赛1010题,二分)

    Flyer Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  8. HDU 4733 G(x) (2013成都网络赛,递推)

    G(x) Time Limit: 2000/500 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  9. 2013杭州网络赛D题HDU 4741(计算几何 解三元一次方程组)

    Save Labman No.004 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

随机推荐

  1. 两个不能同时共存的条件orWhere查询

    举例: //我的所有的积分记录 1,我分享的:2,我点击的:(两个条件不能共存) $activity_log = ActivitySharedLog::where(function ($query) ...

  2. 【转】2019年3月 最新win10激活密匙 win10各版本永久激活序列号 win10正式版激活码分享

    现在市面上大致有两种主流激活方法,一种是通过激活码来激活,另外一种是通过激活工具来激活.但是激活工具有个弊端就是激活时间只有180天,很多网友都想要永久激活,现在已经过了win10系统免费推广期了,所 ...

  3. Javascript - Vue - 指令

    指令 v-cloak 解决闪烁,闪烁是指在网速较慢的情况下可能会出现插值表达式{{}}还没有填充数据时会把该表达式直接显示在页面上,如果不希望看到插值表达式则可以使用v-cloak指令,具体做法如下 ...

  4. .Net Core连接RabbitMQ集群

    var connectionFactory = new ConnectionFactory() { //HostName = "192.168.205.128", 集群不在此处声明 ...

  5. Python-Analysis-Malware

    Python恶意软件分析应用-PEfile 0x1.前言 要想对恶意代码快速分析,Python是一门必须要掌握的编程技能.因为它是跨平台的,而且容易阅读和编写.许多开源安全工具也是用Python写的. ...

  6. tar.gz tar.bz2的解压命令

    .tar.gz     格式解压为          tar   -zxvf   xx.tar.gz .tar.bz2   格式解压为          tar   -jxvf    xx.tar.b ...

  7. 当父级绑定了DataContext之内的数据源时,子级想重新绑回DataContext

    <Grid x:Name="NewDeploymentObjectPanel" Background="White" DataContext=" ...

  8. linux设置最大打开文件数

    一.查看当前用户对进程打开文件最大数的限制 $ ulimit -a | grep open 二.系统对进程打开文件最大数是如何限制的 先来看man的一段解析: /proc/sys/fs/file-ma ...

  9. 【Java】 大话数据结构(9) 树(二叉树、线索二叉树)

    本文根据<大话数据结构>一书,对Java版的二叉树.线索二叉树进行了一定程度的实现. 另: 二叉排序树(二叉搜索树) 平衡二叉树(AVL树) 二叉树的性质 性质1:二叉树第i层上的结点数目 ...

  10. SpringBoot的Controller使用

    一: 1.注解 2.control注解 3.效果 4.RespomseBody package com.caojun.springboot; import org.springframework.be ...