Verilog 加法器和减法器(6)
为了减小行波进位加法器中进位传播延迟的影响,可以尝试在每一级中快速计算进位,如果能在较短时间完成计算,则可以提高加法器性能。
我们可以进行如下的推导:
设 gi=xi&yi, pi = xi +y i
ci+1 = xi&y i+x i&ci+yi&ci=xi&yi + (xi+yi)&ci=g i+pi&c i = gi+pi&(gi-1+pi-1&ci-1)=g i+pi&g i-1+pi&pi-1&ci-1= ….=gi+pi &gi-1+pi &pi-1&gi-2+…+pi&pi-1…p2&p1 &g0+pi &pi-1..p1 &p0&c0; 实现这个逻辑电路的加法器是超前进位加法器。从公式中,可以看出门延时要比行波进位加法器小很多。但是电路复杂,逻辑门的扇入数量将限制超前进位加法器的速度。
由于扇入数量限制,通常我们仅实现4位超前进位加法器和8位超前进位加法器,然后在串联成16/32/64等高位加法器。
下面是4位和8位的超前进位加法器代码:
module adder4_fast(
cin,
x,
y,
s,
cout
); input cin;
input [3:0] x;
input [3:0] y;
output [3:0] s;
output cout; wire [4:0] g,p,c; assign c[0] = cin;
assign p = x | y;
assign g = x & y;
//assign c[1] = g[0] | (p[0] & c[0]);
//assign c[2] = g[1] | (p[1] & (g[0] | (p[0] & c[0])));
//assign c[3] = g[2] | (p[2] & (g[1] | (p[1] & (g[0] | (p[0] & c[0])))));
//assign c[4] = g[3] | (p[3] & (g[2] | (p[2] & (g[1] | (p[1] & (g[0] | (p[0] & c[0])))))));
assign c[1] = g[0] | (p[0] & c[0]);
assign c[2] = g[1] | (p[1]&g[0])|(p[1]&p[0]&c[0]);
assign c[3] = g[2] | (p[2]&g[1])|(p[2]&p[1]&g[0])|(p[2]&p[1]&p[0]&c[0]);
assign c[4] = g[3] | (p[3]&g[2])|(p[3]&p[2]&g[1])|(p[3]&p[2]&p[1]&g[0])|(p[3]&p[2]&p[1]&p[0]&c[0]);
assign s = x^y^c[3:0];
assign cout = c[4]; endmodule
module adder8_fast(
cin,
x,
y,
s,
cout
); input cin;
input [7:0] x;
input [7:0] y;
output [7:0] s;
output cout; wire [8:0] g,p,c; assign c[0] = cin;
assign p = x | y;
assign g = x & y;
//assign c[1] = g[0] | (p[0] & c[0]);
//assign c[2] = g[1] | (p[1] & (g[0] | (p[0] & c[0])));
//assign c[3] = g[2] | (p[2] & (g[1] | (p[1] & (g[0] | (p[0] & c[0])))));
//assign c[4] = g[3] | (p[3] & (g[2] | (p[2] & (g[1] | (p[1] & (g[0] | (p[0] & c[0])))))));
//assign c[5] = g[4] | (p[4] & (g[3] | (p[3] & (g[2] | (p[2] & (g[1] | (p[1] & (g[0] | (p[0] & c[0])))))))));
//assign c[6] = g[5] | (p[5] & (g[4] | (p[4] & (g[3] | (p[3] & (g[2] | (p[2] & (g[1] | (p[1] & (g[0] | (p[0] & c[0])))))))))));
//assign c[7] = g[6] | (p[6] & (g[5] | (p[5] & (g[4] | (p[4] & (g[3] | (p[3] & (g[2] | (p[2] & (g[1] | (p[1] & (g[0] | (p[0] & c[0])))))))))))));
//assign c[8] = g[7] | (p[7] & (g[6] | (p[6] & (g[5] | (p[5] & (g[4] | (p[4] & (g[3] | (p[3] & (g[2] | (p[2] & (g[1] | (p[1] & (g[0] | (p[0] & c[0])))))))))))))));
assign c[1] = g[0] | (p[0] & c[0]);
assign c[2] = g[1] | (p[1]&g[0])|(p[1]&p[0]&c[0]);
assign c[3] = g[2] | (p[2]&g[1])|(p[2]&p[1]&g[0])|(p[2]&p[1]&p[0]&c[0]);
assign c[4] = g[3] | (p[3]&g[2])|(p[3]&p[2]&g[1])|(p[3]&p[2]&p[1]&g[0])|(p[3]&p[2]&p[1]&p[0]&c[0]);
assign c[5] = g[4] | (p[4]&g[3])|(p[4]&p[3]&g[2])|(p[4]&p[3]&p[2]&g[1])|(p[4]&p[3]&p[2]&p[1]&g[0])|(p[4]&p[3]&p[2]&p[1]&p[0]&c[0]);
assign c[6] = g[5] | (p[5]&g[4])|(p[5]&p[4]&g[3])|(p[5]&p[4]&p[3]&g[2])|(p[5]&p[4]&p[3]&p[2]&g[1])|(p[5]&p[4]&p[3]&p[2]&p[1]&g[0])|(p[5]&p[4]&p[3]&p[2]&p[1]&p[0]&c[0]);
assign c[7] = g[6] | (p[6]&g[5])|(p[6]&p[5]&g[4])|(p[6]&p[5]&p[4]&g[3])|(p[6]&p[5]&p[4]&p[3]&g[2])|(p[6]&p[5]&p[4]&p[3]&p[2]&g[1])|(p[6]&p[5]&p[4]&p[3]&p[2]&p[1]&g[0])|(p[6]&p[5]&p[4]&p[3]&p[2]&p[1]&p[0]&c[0]);
assign c[8] = g[7] | (p[7]&g[6])|(p[7]&p[6]&g[5])|(p[7]&p[6]&p[5]&g[4])|(p[7]&p[6]&p[5]&p[4]&g[3])|(p[7]&p[6]&p[5]&p[4]&p[3]&g[2])|(p[7]&p[6]&p[5]&p[4]&p[3]&p[2]&g[1])|(p[7]&p[6]&p[5]&p[4]&p[3]&p[2]&p[1]&g[0])|(p[7]&p[6]&p[5]&p[4]&p[3]&p[2]&p[1]&p[0]&c[0]);
assign s = x^y^c[7:0];
assign cout = c[8]; endmodule
下面的代码把4个超前进位加法器串联起来,形成一个32位加法器。
module addern_fast(
cin,
x,
y,
s,
cout
); input cin;
input [31:0] x;
input [31:0] y;
output [31:0] s;
output cout;
wire [2:0] cout_tmp; adder8_fast adder8_fast_0(.cin(cin),.x(x[7:0]),.y(y[7:0]),.s(s[7:0]),.cout(cout_tmp[0]));
adder8_fast adder8_fast_1(.cin(cout_tmp[0]),.x(x[15:8]),.y(y[15:8]),.s(s[15:8]),.cout(cout_tmp[1]));
adder8_fast adder8_fast_2(.cin(cout_tmp[1]),.x(x[23:16]),.y(y[23:16]),.s(s[23:16]),.cout(cout_tmp[2]));
adder8_fast adder8_fast_3(.cin(cout_tmp[2]),.x(x[31:24]),.y(y[31:24]),.s(s[31:24]),.cout(cout)); endmodule
下面是4位超前进位加法器的逻辑图:
8位超前进位加法器的波形结果。
Verilog 加法器和减法器(6)的更多相关文章
- Verilog 加法器和减法器(8)-串行加法器
如果对速度要求不高,我们也可以使用串行加法器.下面通过状态机来实现串行加法器的功能. 设A=an-1an-2-a0, B=bn-1bn-2-b0,是要相加的两个无符号数,相加的和为:sum=sn-1s ...
- Verilog 加法器和减法器(4)
类似于行波进位加法器,用串联的方法也能够实现多位二进制数的减法操作. 比如下图是4位二进制减法逻辑电路图. 8位二进制减法的verilog代码如下: module subn(x, y, d,cin) ...
- Verilog 加法器和减法器(7)
在计算机中浮点数 表示通常采用IEEE754规定的格式,具体参考以下文章. https://www.cnblogs.com/mikewolf2002/p/10095995.html 下面我们在Veri ...
- Verilog 加法器和减法器(3)
手工加法运算时候,我们都是从最低位的数字开始,逐位相加,直到最高位.如果第i位产生进位,就把该位作为第i+1位输入.同样的,在逻辑电路中,我们可以把一位全加器串联起来,实现多位加法,比如下面的四位加法 ...
- Verilog 加法器和减法器(2)
类似半加器和全加器,也有半减器和全减器. 半减器只考虑当前两位二进制数相减,输出为差以及是否向高位借位,而全减器还要考虑当前位的低位是否曾有借位.它们的真值表如下: 对半减器,diff = x ^y, ...
- Verilog 加法器和减法器(1)
两个一位的二进制数x,y相加,假设和为s,进位为cout,其真值表为: 从真值表中,我们可以得到:s = x^y, cout = x&y,实现两个一位数相加的逻辑电路称为半加器. 实现该电路的 ...
- Verilog 加法器和减法器(5)
前面二进制加法运算,我们并没有提操作数是有符号数,还是无符号数.其实前面的二进制加法对于有符号数和无符号数都成立.比如前面的8位二进制加法运算,第一张图我们选radix是unsigned,表示无符号加 ...
- 基于Xilinx的Synthesize
所谓综合.就是讲HDL语言.原理图等设计输入翻译成由与.或.非们和RAM.触发器登记本逻辑单元的逻辑连接(即网表).并依据目标和要求(约束条件)优化生成的逻辑连接. ISE-XST XST是Xilin ...
- FPGA综合工具--Synplify Pro的常用选项及命令
最近要用到Synplify,但以前没使用过,无基础,找到一篇帖子,隧保存下来. 本文转自:http://blog.sina.com.cn/s/blog_65fe490d0100v8ax.html Sy ...
随机推荐
- SpringBoot详细研究-01基础
Springboot可以说是当前最火的java框架了,非常适合于"微服务"思路的开发,大幅缩短软件开发周期. 概念 过去Spring充满了配置bean的xml文件,随着spring ...
- ARP欺骗防御工具arpon
ARP欺骗防御工具arpon ARP欺骗是局域网最为常见的中人间攻击实施方式.Kali Linux提供一款专用防御工具arpon.该工具提供三种防御方式,如静态ARP防御SARPI.动态ARP防御 ...
- StringBuilder的实现与技巧ZZ
在上一篇进一步了解String 中,发现了string的不便之处,而string的替代解决方案就是StringBuilder的使用..它的使用也很简单System.Text.StringBuild ...
- 利用Microsoft Sql Server Management studio 创建数据库的示例
利用Microsoft Sql Server Management studio 创建数据库的示例方法如下: 一.打开安装好的Microsoft Sql Server Management stu ...
- hdu 5723 Abandoned country 最小生成树 期望
Abandoned country 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5723 Description An abandoned coun ...
- POP3_收取QQ邮箱邮件的问题
今天纠结了一天的时间,使用pop3协议收取qq邮箱中邮件时,因为一个特别坑爹的问题重新写n次,最后发现是因为qq邮箱设置了独立邮箱密码,必须的用独立邮箱密码登陆才行,/(ㄒoㄒ)/~~!!!! 但今天 ...
- JTAG TAP Controller
The TAP controller is a synchronous finite state machine that responds to changes at the TMS and TCK ...
- leetcode 题解 || Valid Parentheses 问题
problem: Given a string containing just the characters '(', ')', '{', '}', '[' and ']', determine if ...
- 向OSG视图Viewer发送消息
句柄是以下面的方式传递给osgViewer::Viewer的,osgViewer::View.getCamera().setGraphicsContext(osg::GraphicsContext); ...
- 基于设备树的TQ2440 DMA学习(4)—— client驱动
作者 彭东林pengdonglin137@163.com 平台 TQ2440Linux-4.9 概述 前面分析了DMA控制器驱动,下面我们调用DMAENGINE的API写一个MEM2MEM的驱动 正文 ...