Treasure Map


Time Limit: 2 Seconds      Memory Limit: 32768 KB

Your boss once had got many copies of a treasure map. Unfortunately, all the copies are now broken to many rectangular pieces, and what make it worse, he has lost some of the pieces. Luckily, it is possible to figure out the position of each piece in the original map. Now the boss asks you, the talent programmer, to make a complete treasure map with these pieces. You need to make only one complete map and it is not necessary to use all the pieces. But remember, pieces are not allowed to overlap with each other (See sample 2).

Input

The first line of the input contains an integer T (T <= 500), indicating the number of cases.

For each case, the first line contains three integers n m p (1 <= nm <= 30, 1 <= p <= 500), the width and the height of the map, and the number of pieces. Then p lines follow, each consists of four integers x1 y1 x2 y2 (0 <= x1 < x2 <= n, 0 <= y1 < y2 <= m), where (x1, y1) is the coordinate of the lower-left corner of the rectangular piece, and (x2, y2) is the coordinate of the upper-right corner in the original map.

Cases are separated by one blank line.

Output

If you can make a complete map with these pieces, output the least number of pieces you need to achieve this. If it is impossible to make one complete map, just output -1.

Sample Input

3
5 5 1
0 0 5 5 5 5 2
0 0 3 5
2 0 5 5 30 30 5
0 0 30 10
0 10 30 20
0 20 30 30
0 0 15 30
15 0 30 30

Sample Output

1
-1
2

Hint

For sample 1, the only piece is a complete map.

For sample 2, the two pieces may overlap with each other, so you can not make a complete treasure map.

For sample 3, you can make a map by either use the first 3 pieces or the last 2 pieces, and the latter approach one needs less pieces.

精确覆盖问题,使用DLX,将图按行向量压成一维就TLE了,按列向量压成一维却过了。。。不是很懂。。。

 //2017-04-15
#include <iostream>
#include <cstdio>
#include <cstring> using namespace std; const int N = ;
const int M = ;
const int maxnode = N*M;
int p; struct DLX
{
int n, m, sz;//n为矩阵行数,m为矩阵列数,sz为编号
int U[maxnode], D[maxnode], R[maxnode], L[maxnode], Row[maxnode], Col[maxnode];//U、D、R、L分别记录上下右左域。Row[i]表示编号为i的节点所在的行号,Col[i]表示编号为i的节点所在的列号
int H[N], S[M];//H[i]表示指向第i行最前边的节点,S[i]表示第i列1的个数
int ansd, ans[N]; void init(int nn, int mm)
{
n = nn; m = mm;
for(int i = ; i <= m; i++)
{
S[i] = ;//每一行1的个数初始化为0
U[i] = D[i] = i;//最上面的一行表头C,上下域初始化都为自身
L[i] = i-;//左边
R[i] = i+;//右边
}
R[m] = ; L[] = m;//头尾特殊处理
sz = m;
for(int i = ; i <= n; i++)H[i] = -;
}
void link(int r, int c)//第r行第c列为1
{
++S[Col[++sz] = c];//编号加1,记录列,所在的列1的个数加1
Row[sz] = r;//记录行
/*link上下域:*/
D[sz] = D[c];
U[D[c]] = sz;
U[sz] = c;
D[c] = sz;
/*link左右域:*/
if(H[r] < )H[r] = L[sz] = R[sz] = sz;
else{
R[sz] = R[H[r]];
L[R[H[r]]] = sz;
L[sz] = H[r];
R[H[r]] = sz;
}
} void Remove(int c)//删除第c列和其对应的行
{
L[R[c]] = L[c]; R[L[c]] = R[c];
for(int i = D[c]; i != c; i = D[i])
for(int j = R[i]; j != i; j = R[j])
{
U[D[j]] = U[j];
D[U[j]] = D[j];
--S[Col[j]];
}
} void resume(int c)//恢复第c列和其对应的行
{
for(int i = U[c]; i != c; i = U[i])
for(int j = L[i]; j != i; j = L[j])
++S[Col[U[D[j]]=D[U[j]]=j]];
L[R[c]] = R[L[c]] = c;
} void Dance(int d)//d表示选了多少行
{
if(ansd != - && ansd <= d)return;//剪枝
if(R[] == )//0号节点为head节点
{
if(ansd == -)ansd = d;
else if(ansd > d)ansd = d;
return;
}
int c = R[];
for(int i = R[]; i != ; i = R[i])//选出1最少的列
if(S[i] < S[c])c = i;
Remove(c);
for(int i = D[c]; i != c; i = D[i])//枚举第c列存在1节点的行,进行递归处理
{
ans[d] = Row[i];//表示第d行选Row[i]
for(int j = R[i]; j != i; j = R[j])Remove(Col[j]);//将这一行1节点所在的列都删除
Dance(d+);
for(int j = L[i]; j != i; j = L[j])resume(Col[j]);//恢复
}
resume(c);
}
}dlx; int main()
{
int n, m, T, x1, x2, y1, y2;
scanf("%d", &T);
while(T--)
{
scanf("%d%d%d", &n, &m, &p);
dlx.init(p, n*m);
for(int i = ; i <= p; i++)
{
scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
for(int h = x1; h < x2; h++)
for(int l = y1+; l <= y2; l++)
dlx.link(i, h*m+l);
}
dlx.ansd = -;
dlx.Dance();
printf("%d\n", dlx.ansd);
} return ;
}

ZOJ3209(KB3-B DLX)的更多相关文章

  1. zoj3209(DLX)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=16234 题意:给p张小纸片, 问能不能选出尽量少的一部分或全部数量 ...

  2. DLX 舞蹈链 精确覆盖 与 重复覆盖

    精确覆盖问题:给定一个由0-1组成的矩阵,是否能找到一个行的集合,使得集合中每一列都恰好包含一个1 还有重复覆盖问题 dancing links 是 一种数据结构,用来优化搜索,不算是一种算法.(双向 ...

  3. ZOJ3209 Treasure Map —— Danc Links 精确覆盖

    题目链接:https://vjudge.net/problem/ZOJ-3209 Treasure Map Time Limit: 2 Seconds      Memory Limit: 32768 ...

  4. DLX (poj 3074)

    题目:Sudoku 匪夷所思的方法,匪夷所思的速度!!! https://github.com/ttlast/ACM/blob/master/Dancing%20Link%20DLX/poj%2030 ...

  5. HDU 3957 Street Fighter(搜索、DLX、重复覆盖+精确覆盖)

    很久以前就看到的一个经典题,一直没做,今天拿来练手.街霸 给n<=25个角色,每个角色有 1 or 2 个版本(可以理解为普通版以及爆发版),每个角色版本可以KO掉若干人. 问最少选多少个角色( ...

  6. 数独求解 DFS && DLX

    题目:Sudoku 题意:求解数独.从样例和结果来看应该是简单难度的数独 思路:DFS 设置3个数组,row[i][j] 判断第i行是否放了j数字,col[i][j] 判断第i列是否放了j数字.squ ...

  7. DLX模型问题

    问题:sevenzero liked Warcraft very much, but he haven't practiced it for several years after being add ...

  8. HDU 4069 Squiggly Sudoku(DLX)(The 36th ACM/ICPC Asia Regional Fuzhou Site —— Online Contest)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4069 Problem Description Today we play a squiggly sud ...

  9. HDU 5046 Airport(dlx)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5046 题意:n个城市修建m个机场,使得每个城市到最近进场的最大值最小. 思路:二分+dlx搜索判定. ...

随机推荐

  1. 「PKUSC2018」主斗地(暴搜)

    这道斗地主比 \(PKUWC\) 那道可做多了... 我们用 \(NOIP\) 那道斗地主的思路:暴搜出三代和四代,贪心出散牌. 还有jry为什么要出xx网友而不出他的另一个老婆 我们发现两个人的每回 ...

  2. 面向对象多继承(c3算法)、网络基础和编写网络相关的程序

    一.面向对象多继承(c3算法) a.有多个父类先找左,再找右,如下示例: class A(object): pass class B(object): def f1(self): print('B') ...

  3. SpringCloud之Ribbon

    一:Ribbon是什么?  Ribbon是Netflix发布的开源项目,主要功能是提供客户端的软件负载均衡算法,将Netflix的中间层服务连接在一起.Ribbon客户端组件提供一系列完善的配置项如连 ...

  4. Html 常见meta

    html 的meta标签对网页渲染及SEO搜索引擎起着不可忽视的作用.详细的写法一段时间不写,容易忘,所以整理了一下,方便需要时查看. <!DOCTYPE html> <!-- 使用 ...

  5. eclipse maven打war包

    在eclipse中找到pom.xml文件右键 选择debug as 再选择Maven install运行后 按路径找到生成的war包 推荐https://www.cnblogs.com/qlqwjy/ ...

  6. typescript-koa-postgresql 实现一个简单的rest风格服务器 —— 连接 postgresql 数据库

    接上一篇,这里使用 sequelize 来连接 postgresql 数据库 1.安装 sequelize,数据库驱动 pg yarn add sequelize sequelize-typescri ...

  7. 课程一(Neural Networks and Deep Learning)总结——1、Logistic Regression

    ---------------------------------------------------------------------------------------------------- ...

  8. jquery.cropper 裁剪图片上传

    https://github.com/fengyuanchen/cropper 1.必要的文件引用: <script src="/path/to/jquery.js"> ...

  9. Mac 下安装.NET Core 与 CLI

    .NET Foundation:https://github.com/dotnet/home .NET Core:https://github.com/dotnet/coreclr CLI:https ...

  10. android studio jni调用入门

    一.开发环境配置: 1.Android Studio 2.3.3 2.android-ndk-r14b-windows-x86_64 二.创建项目 1.新建android项目 2.新建文件 3.编译生 ...