介绍一种解决最近公共祖先的在线算法,倍增,它是建立在任意整数的二进制拆分之上。

 

代码:

 

 //LCA:Doubly

 #include<cstdio>
#define swap(a,b) a^=b^=a^=b
#define maxn 500010
using namespace std; int n,m,s,tot,head[maxn],deep[maxn],p[maxn][];
struct node
{
int nxt,to;
}edge[maxn<<]; int read()
{
int x=,f=;
char c=getchar();
while (c<||c>)
f=c=='-'?-:,c=getchar();
while (c>=&&c<=)
x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
} void write(int x)
{
if (x<)
x=-x,putchar('-');
if (x>=)
write(x/);
putchar(x%+);
} void add(int a,int b)
{
edge[++tot]=(node){head[a],b};
head[a]=tot;
edge[++tot]=(node){head[b],a};
head[b]=tot;
} void init()
{
for (int j=;(<<j)<=n;j++)
for (int i=;i<=n;i++)
if (p[i][j-])
p[i][j]=p[p[i][j-]][j-];
} int dfs(int u)
{
for (int i=head[u];i;i=edge[i].nxt)
if (!deep[edge[i].to])
{
deep[edge[i].to]=deep[u]+;
p[edge[i].to][]=u;
dfs(edge[i].to);
}
} int LCA(int a,int b)
{
if (deep[a]<deep[b])
swap(a,b);
int i,j;
for (i=;(<<i)<=deep[a];i++);
i--;
for (j=i;j>=;j--)
if (deep[b]<=deep[a]-(<<j))
a=p[a][j];
if (a==b)
return a;
for (j=i;j>=;j--)
if (p[a][j]!=p[b][j]&&deep[p[a][j]]>=)
{
a=p[a][j];
b=p[b][j];
}
return p[a][];
} int main()
{
int i,j,k;
n=read(),m=read(),s=read();
for (i=;i<=n-;i++)
add(read(),read());
deep[s]=;
dfs(s);
init();
while (m--)
write(LCA(read(),read())),putchar();
return ;
}

LCA 算法(二)倍增的更多相关文章

  1. 【图论】tarjan的离线LCA算法

    百度百科 Definition&Solution 对于求树上\(u\)和\(v\)两点的LCA,使用在线倍增可以做到\(O(nlogn)\)的复杂度.在NOIP这种毒瘤卡常比赛中,为了代码的效 ...

  2. LCA算法

    LCA算法: LCA(Least Common Ancestor),顾名思义,是指在一棵树中,距离两个点最近的两者的公共节点.也就是说,在两个点通往根的道路上,肯定会有公共的节点,我们就是要求找到公共 ...

  3. TensorFlow 入门之手写识别(MNIST) softmax算法 二

    TensorFlow 入门之手写识别(MNIST) softmax算法 二 MNIST Fly softmax回归 softmax回归算法 TensorFlow实现softmax softmax回归算 ...

  4. 分布式共识算法 (二) Paxos算法

    系列目录 分布式共识算法 (一) 背景 分布式共识算法 (二) Paxos算法 分布式共识算法 (三) Raft算法 分布式共识算法 (四) BTF算法 一.背景 1.1 命名 Paxos,最早是Le ...

  5. 利用Tarjan算法解决(LCA)二叉搜索树的最近公共祖先问题——数据结构

    相关知识:(来自百度百科)  LCA(Least Common Ancestors) 即最近公共祖先,是指在有根树中,找出某两个结点u和v最近的公共祖先. 例如: 1和7的最近公共祖先为5: 1和5的 ...

  6. 最近公共祖先算法LCA笔记(树上倍增法)

    Update: 2019.7.15更新 万分感谢[宁信]大佬,认认真真地审核了本文章,指出了超过五处错误捂脸,太尴尬了. 万分感谢[宁信]大佬,认认真真地审核了本文章,指出了超过五处错误捂脸,太尴尬了 ...

  7. [算法]树上倍增求LCA

    LCA指的是最近公共祖先(Least Common Ancestors),如下图所示: 4和5的LCA就是2 那怎么求呢?最粗暴的方法就是先dfs一次,处理出每个点的深度 然后把深度更深的那一个点(4 ...

  8. LCA算法倍增算法(洛谷3379模板题)

    倍增(爬树)算法,刚刚学习的算法.对每一个点的父节点,就记录他的2k的父亲. 题目为http://www.luogu.org/problem/show?pid=3379 第一步先记录每一个节点的深度用 ...

  9. LCA算法解析-Tarjan&倍增&RMQ

    原文链接http://www.cnblogs.com/zhouzhendong/p/7256007.html UPD(2018-5-13) : 细节修改以及使用了Latex代码,公式更加美观.改的过程 ...

随机推荐

  1. Apache Ignite 学习笔记(一): Ignite介绍、部署安装和REST/SQL客户端使用

    Apache Ignite 介绍 Ignite是什么呢?先引用一段官网关于Ignite的描述: Ignite is memory-centric distributed database, cachi ...

  2. 01_python2.x和python3.x中range()的区别

    Py2.x 1) .range 和xrange都是经常使用的,特别是range()返回一个列表 2) .xrange()一般用来创建迭代对象 Py3.x xrange()不存在了,只有range()而 ...

  3. raft--分布式一致性协议

    0. 写在前面的话 一直从事分布式对象存储工作,在分布式对象存储的运营,开发等工作中,数据一致性是至关重要的.因此想写一篇关于分布式一致性的文章.一来,可以和大家分享.二来,可以提高自己的文字提炼能力 ...

  4. Linux内核分析——第六周学习笔记

    进程的描述和进程的创建 前言:以下笔记除了一些讲解视频中的概念记录,图示.图示中的补充文字.总结.分析.小结部分均是个人理解.如有错误观点,请多指教! PS.实验操作会在提交到MOOC网站的博客中写.

  5. VS系列软件中debug和release编译环境有什么区别

    当编译和执行一个工程时,可以在Debug和Release两种配置下执行. Debug模式用于调试程序,这是个受保护的运行环境,它将告诉你程序是否有泄露,在运行时也能对特定函数的结果进行检查.然而它生成 ...

  6. Daily Scrum & Project Team Meeting Review - 11/27

    Welcome back Liyuan! Project Team Meeting Review 今天很荣幸能和Xin Zou.Travis Li.Ran Bi和Zhongqiu交流了项目进度和下一步 ...

  7. 5Java异常处理

    五.异常 异常概念总结:   练习一:异常的体系    问题:    1. 请描述异常的继承体系    2. 请描述你对错误(Error)的理解    3. 请描述你对异常(Expection的理解) ...

  8. pgm10

    这部分讨论 MAP 估计.从某个角度上来说,我们可以将这个问题转换成为前面讨论过的: 这样一来我们只需要将原先的 sum-product 换成 max-sum 即可.话虽这么说,我们还是看看 Koll ...

  9. github如何添加新的分支

    需求:甲建立分支分给乙步骤:在甲创建的项目仓库里边点右上角的按钮 就可以通过名字搜索了. 在乙的右上角 再选中Repositories就可以看到所有的 存储库 了

  10. 【刷题】洛谷 P1966 火柴排队

    题目描述 涵涵有两盒火柴,每盒装有 n 根火柴,每根火柴都有一个高度. 现在将每盒中的火柴各自排成一列, 同一列火柴的高度互不相同, 两列火柴之间的距离定义为: ∑(ai-bi)^2 其中 ai 表示 ...