Cache: a place for concealment and safekeeping.Cache: 一个隐藏并保存数据的场所
原文标题:Cache: a place for concealment and safekeeping
原文地址:http://duartes.org/gustavo/blog/
[注:本人水平有限,只好挑一些国外高手的精彩文章翻译一下。一来自己复习,二来与大家分享。]
本文简要的展示了现代Intel处理器的CPU cache是如何组织的。有关cache的讨论往往缺乏具体的实例,使得一些简单的概念变得扑朔迷离。也许是我可爱的小脑瓜有点迟钝吧,但不管怎样,至少下面讲述了故事的前一半,即Core 2的 L1 cache是如何被访问的:
L1 cache – 32KB,8路组相联,64字节缓存线
1. 由索引拣选缓存组(行)
在cache中的数据是以缓存线(line)为单位组织的,一条缓存线对应于内存中一个连续的字节块。这个cache使用了64字节的缓存线。这些线被保存在cache bank中,也叫路(way)。每一路都有一个专门的目录(directory)用来保存一些登记信息。你可以把每一路连同它的目录想象成电子表格中的一列,而表的一行构成了cache的一组(set)。列中的每一个单元(cell)都含有一条缓存线,由与之对应的目录单元跟踪管理。图中的cache有64 组、每组8路,因此有512个含有缓存线的单元,合计32KB的存储空间。
在cache眼中,物理内存被分割成了许多4KB大小的物理内存页(page)。每一页都含有4KB / 64 bytes == 64条缓存线。在一个4KB的页中,第0到63字节是第一条缓存线,第64到127字节是第二条缓存线,以此类推。每一页都重复着这种划分,所以第0页第3条缓存线与第1页第3条缓存线是不同的。
在全相联缓存(fully associative cache)中,内存中的任意一条缓存线都可以被存储到任意的缓存单元中。这种存储方式十分灵活,但也使得要访问它们时,检索缓存单元的工作变得复杂、昂贵。由于L1和L2 cache工作在很强的约束之下,包括功耗,芯片物理空间,存取速度等,所以在多数情况下,使用全相联缓存并不是一个很好的折中。
取而代之的是图中的组相联缓存(set associative cache)。意思是,内存中一条给定的缓存线只能被保存在一个特定的组(或行)中。所以,任意物理内存页的第0条缓存线(页内第0到63字节)必须存储到第0组,第1条缓存线存储到第1组,以此类推。每一组有8个单元可用于存储它所关联的缓存线(译注:就是那些需要存储到这一组的缓存线),从而形成一个8路关联的组(8-way associative set)。当访问一个内存地址时,地址的第6到11位(译注:组索引)指出了在4KB内存页中缓存线的编号,从而决定了即将使用的缓存组。举例来说,物理地址0x800010a0的组索引是000010,所以此地址的内容一定是在第2组中缓存的。
但是还有一个问题,就是要找出一组中哪个单元包含了想要的信息,如果有的话。这就到了缓存目录登场的时刻。每一个缓存线都被其对应的目录单元做了标记(tag);这个标记就是一个简单的内存页编号,指出缓存线来自于哪一页。由于处理器可以寻址64GB的物理RAM,所以总共有64GB / 4KB == 224个内存页,需要24位来保存标记。前例中的物理地址0x800010a0对应的页号为524,289。下面是故事的后一半:
在组中搜索匹配标记
由于我们只需要去查看某一组中的8路,所以查找匹配标记是非常迅速的;事实上,从电学角度讲,所有的标记是同时进行比对的,我用箭头来表示这一点。如果此时正好有一条具有匹配标签的有效缓存线,我们就获得一次缓存命中(cache hit)。否则,这个请求就会被转发的L2 cache,如果还没匹配上就再转发给主系统内存。通过应用各种调节尺寸和容量的技术,Intel给CPU配置了较大的L2 cache,但其基本的设计都是相同的。比如,你可以将原先的缓存增加8路而获得一个64KB的缓存;再将组数增加到4096,每路可以存储256KB。经过这两次修改,就得到了一个4MB的L2 cache。在此情况下,需要18位来保存标记,12位保存组索引;缓存所使用的物理内存页的大小与其一路的大小相等。(译注:有4096组,就需要lg(4096)==12位的组索引,缓存线依然是64字节,所以一路有4096*64B==256KB字节;在L2 cache眼中,内存被分割为许多256KB的块,所以需要lg(64GB/256KB)==18位来保存标记。)
如果有一组已经被放满了,那么在另一条缓存线被存储进来之前,已有的某一条则必须被腾空(evict)。为了避免这种情况,对运算速度要求较高的程序就要尝试仔细组织它的数据,使得内存访问均匀的分布在已有的缓存线上。举例来说,假设程序中有一个数组,元素的大小是512字节,其中一些对象在内存中相距4KB。这些对象的各个字段都落在同一缓存线上,并竞争同一缓存组。如果程序频繁的访问一个给定的字段(比如,通过虚函数表vtable调用虚函数),那么这个组看起来就好像一直是被填满的,缓存开始变得毫无意义,因为缓存线一直在重复着腾空与重新载入的步骤。在我们的例子中,由于组数的限制,L1 cache仅能保存8个这类对象的虚函数表。这就是组相联策略的折中所付出的代价:即使在整体缓存的使用率并不高的情况下,由于组冲突,我们还是会遇到缓存缺失的情况。然而,鉴于计算机中各个存储层次的相对速度,不管怎么说,大部分的应用程序并不必为此而担心。
一个内存访问经常由一个线性(或虚拟)地址发起,所以L1 cache需要依赖分页单元(paging unit)来求出物理内存页的地址,以便用于缓存标记。与此相反,组索引来自于线性地址的低位,所以不需要转换就可以使用了(在我们的例子中为第6到11位)。因此L1 cache是物理标记但虚拟索引的(physically tagged but virtually indexed),从而帮助CPU进行并行的查找操作。因为L1 cache的一路绝不会比MMU的一页还大,所以可以保证一个给定的物理地址位置总是关联到同一组,即使组索引是虚拟的。在另一方面L2 cache必须是物理标记和物理索引的,因为它的一路比MMU的一页要大。但是,当一个请求到达L2 cache时,物理地址已经被L1 cache准备(resolved)完毕了,所以L2 cache会工作得很好。
最后,目录单元还存储了对应缓存线的状态(state)。在L1代码缓存中的一条缓存线要么是无效的(invalid)要么是共享的(shared,意思是有效的,真的J)。在L1数据缓存和L2缓存中,一条缓存线可以为4个MESI状态之一:被修改的(modified),独占的(exclusive),共享的(shared),无效的(invalid)。Intel缓存是包容式的(inclusive):L1缓存的内容会被复制到L2缓存中。在下一篇讨论线程(threading),锁定(locking)等内容的文章中,这些缓存线状态将发挥作用。下一次,我们将看看前端总线以及内存访问到底是怎么工作的。这将成为一个内存研讨周。
(在回复中Dave提到了直接映射缓存(direct-mapped cache)。它们基本上是一种特殊的组相联缓存,只是只有一路而已。在各种折中方案中,它与全相联缓存正好相反:访问非常快捷,但因组冲突而导致的缓存缺失也非常多。)
[译者小结:
1. 内存层次结构的意义在于利用引用的空间局部性和时间局部性原理,将经常被访问的数据放到快速的存储器中,而将不经常访问的数据留在较慢的存储器中。
2. 一般情况下,除了寄存器和L1缓存可以操作指定字长的数据,下层的内存子系统就不会再使用这么小的单位了,而是直接移动数据块,比如以缓存线为单位访问数据。
3. 对于组冲突,可以这么理解:与上文相似,假设一个缓存,由512条缓存线组成,每条线64字节,容量32KB。
a) 假如它是直接映射缓存,由于它往往使用地址的低位直接映射缓存线编号,所以所有的32K倍数的地址(32K,64K,96K等)都会映射到同一条线上(即第0线)。假如程序的内存组织不当,交替的去访问布置在这些地址的数据,则会导致冲突。从外表看来就好像缓存只有1条线了,尽管其他缓存线一直是空闲着的。
b) 如果是全相联缓存,那么每条缓存线都是独立的,可以对应于内存中的任意缓存线。只有当所有的512条缓存线都被占满后才会出现冲突。
c) 组相联是前两者的折中,每一路中的缓存线采用直接映射方式,而在路与路之间,缓存控制器使用全相联映射算法,决定选择一组中的哪一条线。
d) 如果是2路组相联缓存,那么这512条缓存线就被分为了2路,每路256条线,一路16KB。此时所有为16K整数倍的地址(16K,32K,48K等)都会映射到第0线,但由于2路是关联的,所以可以同时有2个这种地址的内容被缓存,不会发生冲突。当然了,如果要访问第三个这种地址,还是要先腾空已有的一条才行。所以极端情况下,从外表看来就好像缓存只有2条线了,尽管其他缓存线一直是空闲着的。
e) 如果是8路组相联缓存(与文中示例相同),那么这512条缓存线就被分为了8路,每路64条线,一路4KB。所以如果数组中元素地址是4K对齐的,并且程序交替的访问这些元素,就会出现组冲突。从外表看来就好像缓存只有8条线了,尽管其他缓存线一直是空闲着的。
]
参考: http://blog.csdn.net/drshenlei/article/details/4277959
Cache: a place for concealment and safekeeping.Cache: 一个隐藏并保存数据的场所的更多相关文章
- ARM Cortex-A53 Cache与内存的映射关系以及Cache的一致性分析
ARM Cortex-A53 Cache与内存的映射关系以及Cache的一致性分析 题记:如果文章有理解不对的地方,欢迎大家批评指正,谢谢大家. 摘要:本文以Cortex-A53为例,首先分析Cach ...
- Caused by: org.hibernate.boot.registry.selector.spi.StrategySelectionException: Unable to resolve name [org.hibernate.cache.ehcache.EhCacheRegionFactory] as strategy [org.hibernate.cache.spi.RegionFac
警告: Exception encountered during context initialization - cancelling refresh attempt: org.springfram ...
- Azure Redis Cache (2) 创建和使用Azure Redis Cache
<Windows Azure Platform 系列文章目录> 本文介绍的是国内由世纪互联运维的Azure China. 注意: 截至今日2015年10月7日,国内由世纪互联运维的Azur ...
- E3-1260L (8M Cache, 2.40 GHz) E3-1265L v2 (8M Cache, 2.50 GHz)
http://ark.intel.com/compare/52275,65728 Product Name Intel® Xeon® Processor E3-1260L (8M Ca ...
- CPU与内存的那些事
下面是网上看到的一些关于内存和CPU方面的一些很不错的文章. 整理如下: 转: CPU的等待有多久? 原文标题:What Your Computer Does While You Wait 原文地址: ...
- What Your Computer Does While You Wait
转: CPU的等待有多久? 原文标题:What Your Computer Does While You Wait 原文地址:http://duartes.org/gustavo/blog/ [注:本 ...
- 转:CPU与内存的那些事
下面是网上看到的一些关于内存和CPU方面的一些很不错的文章. 整理如下: 转: CPU的等待有多久? 原文标题:What Your Computer Does While You Wait 原文地址: ...
- CPU与内存(经典问答)
原文:http://www.cnblogs.com/xkfz007/archive/2012/10/08/2715163.html 下面是网上看到的一些关于内存和CPU方面的一些很不错的文章. 整理如 ...
- 【转】CPU与内存的那些事
下面是网上看到的一些关于内存和CPU方面的一些很不错的文章. 整理如下: 转: CPU的等待有多久? 原文标题:What Your Computer Does While You Wait 原文地址: ...
随机推荐
- k8s 的使用
Kubernetes 是什么:在 Docker 技术的基础上,为容器化的应用提供部署运行.资源调度.服务发现和动态伸缩等一系列完整功能,提高了大规模容器集群管理的便捷性的工具.
- python一些东西
assert repr() >>> a ['d', 'c', 'c', 'f', 'a', 'a', 'b', 'c', 'd'] >>> sorted(a) [' ...
- Zookeeper 基本概念学习
1.Zookeeper简介: 1) 中间件,为分布式系统提供协调服务 2) 作用于分布式系统,发挥其优势,可以为大数据服务 3) 支持Java,提供java和c语言的客户端api 2. 分布式系统 1 ...
- SparkStreaming整合kafka编程
1.下载spark-streaming-kafka插件包 由于Linux集群环境我使用spark是spark-2.1.1-bin-hadoop2.7,kafka是kafka_2.11-0.8.2.1, ...
- 【java】Hello World
class Demo { //程序的主入口,能保证类的独立运行 public static void main(String[] args) { System.out.println("He ...
- mysql日常处理
http://blog.csdn.net/zengxuewen2045/article/details/52349731 https://github.com/enmotplinux/On-Site- ...
- hadoop HA分布式集群搭建
概述 hadoop2中NameNode可以有多个(目前只支持2个).每一个都有相同的职能.一个是active状态的,一个是standby状态的.当集群运行时,只有active状态的NameNode是正 ...
- SQL2000服务端配置-如何让外网访问SQL2000
刚刚写了个DEMO,在内网来测试SQL2000后完全正常.现在想测试外网是否正常,毕竟路由器IP不固定,所以选择了路由器+花生壳免费域名(koma.5166.info),所以先安装花生壳客户端软件.下 ...
- Winfrom控件使用
1.Lablelable添加图片,解决图片和字体重叠? Text属性添加足够空格即可,显示效果如下所示: 2.根据窗体名称获取窗体并显示到指定panel? Label item = sender as ...
- Selenium+Python:下载文件(Firefox 和 Chrome)
引自 https://blog.csdn.net/Momorrine/article/details/79794146 1. 环境 操作系统 Win10 IDE Eclipse (Oxyg ...