Hadoop基础-MapReduce的常用文件格式介绍
Hadoop基础-MapReduce的常用文件格式介绍
作者:尹正杰
版权声明:原创作品,谢绝转载!否则将追究法律责任。
一.MR文件格式-SequenceFile
1>.生成SequenceFile文件(SequenceFileOutputFormat)
The Apache Hadoop software library is a framework that allows for the distributed processing of large data sets across clusters of computers using simple programming models. It is designed to scale up from single servers to thousands of machines, each offering local computation and storage. Rather than rely on hardware to deliver high-availability, the library itself is designed to detect and handle failures at the application layer, so delivering a highly-available service on top of a cluster of computers, each of which may be prone to failures.
word.txt 文件内容
/*
@author :yinzhengjie
Blog:http://www.cnblogs.com/yinzhengjie/tag/Hadoop%E8%BF%9B%E9%98%B6%E4%B9%8B%E8%B7%AF/
EMAIL:y1053419035@qq.com
*/
package cn.org.yinzhengjie.sequencefile.output; import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper; import java.io.IOException; public class SeqMapper extends Mapper<LongWritable, Text , LongWritable, Text> { @Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { context.write(key,value); }
}
SeqMapper.java 文件内容
/*
@author :yinzhengjie
Blog:http://www.cnblogs.com/yinzhengjie/tag/Hadoop%E8%BF%9B%E9%98%B6%E4%B9%8B%E8%B7%AF/
EMAIL:y1053419035@qq.com
*/
package cn.org.yinzhengjie.sequencefile.output; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.SequenceFile;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat; /**
* 把wc.txt变为SequenceFile
* k-偏移量-LongWritable
* v-一行文本-Text
*/
public class SeqApp { public static void main(String[] args) throws Exception { Configuration conf = new Configuration();
conf.set("fs.defaultFS","file:///");
FileSystem fs = FileSystem.get(conf);
Job job = Job.getInstance(conf); job.setJobName("Seq-Out");
job.setJarByClass(SeqApp.class); //设置输出格式,这里的输出格式要和咱们Mapper程序的格式要一致哟!
job.setOutputKeyClass(LongWritable.class);
job.setOutputValueClass(Text.class); job.setMapperClass(SeqMapper.class); FileInputFormat.addInputPath(job, new Path("D:\\10.Java\\IDE\\yhinzhengjieData\\MyHadoop\\word.txt")); Path outPath = new Path("D:\\10.Java\\IDE\\yhinzhengjieData\\MyHadoop\\seqout");
if (fs.exists(outPath)){
fs.delete(outPath);
}
FileOutputFormat.setOutputPath(job,outPath); //设置文件输出格式为SequenceFile
job.setOutputFormatClass(SequenceFileOutputFormat.class); //设置SeqFile的压缩类型为块压缩
SequenceFileOutputFormat.setOutputCompressionType(job,SequenceFile.CompressionType.BLOCK); //以上设置参数完毕后,我们通过下面这行代码就开始运行job
job.waitForCompletion(true);
}
}
运行以上代码之后,我们可以去输出目录通过hdfs命令查看生成的SequenceFile文件内容,具体操作如下:
2>.对SequenceFile文件进行单词统计测试(SequenceFileInputFormat)
我们就不用去可以找具体的SequenceFile啦,我们直接用上面生成的Sequence进行测试,具体代码如下:
/*
@author :yinzhengjie
Blog:http://www.cnblogs.com/yinzhengjie/tag/Hadoop%E8%BF%9B%E9%98%B6%E4%B9%8B%E8%B7%AF/
EMAIL:y1053419035@qq.com
*/
package cn.org.yinzhengjie.sequencefile.input; import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper; import java.io.IOException; public class SeqMapper extends Mapper<LongWritable, Text, Text, IntWritable> { @Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String line = value.toString();
String[] arr = line.split(" ");
for(String word: arr){
context.write(new Text(word),new IntWritable(1)); } }
}
SeqMapper.java 文件内容
/*
@author :yinzhengjie
Blog:http://www.cnblogs.com/yinzhengjie/tag/Hadoop%E8%BF%9B%E9%98%B6%E4%B9%8B%E8%B7%AF/
EMAIL:y1053419035@qq.com
*/
package cn.org.yinzhengjie.sequencefile.input; import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException; public class SeqReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
Integer sum = 0;
for (IntWritable value : values) {
sum += value.get();
}
context.write(key, new IntWritable(sum));
}
}
SeqReducer.java 文件内容
/*
@author :yinzhengjie
Blog:http://www.cnblogs.com/yinzhengjie/tag/Hadoop%E8%BF%9B%E9%98%B6%E4%B9%8B%E8%B7%AF/
EMAIL:y1053419035@qq.com
*/
package cn.org.yinzhengjie.sequencefile.input; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.SequenceFileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class SeqApp {
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
conf.set("fs.defaultFS","file:///");
FileSystem fs = FileSystem.get(conf);
Job job = Job.getInstance(conf);
job.setJobName("Seq-in");
job.setJarByClass(SeqApp.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
job.setMapperClass(SeqMapper.class);
job.setReducerClass(SeqReducer.class);
//将我们生成的SequenceFile文件作为输入
FileInputFormat.addInputPath(job, new Path("D:\\10.Java\\IDE\\yhinzhengjieData\\MyHadoop\\seqout"));
Path outPath = new Path("D:\\10.Java\\IDE\\yhinzhengjieData\\MyHadoop\\out");
if (fs.exists(outPath)){
fs.delete(outPath);
}
FileOutputFormat.setOutputPath(job, outPath);
//设置输入格式
job.setInputFormatClass(SequenceFileInputFormat.class);
//以上设置参数完毕后,我们通过下面这行代码就开始运行job
job.waitForCompletion(true);
}
}
运行以上代码之后,我们可以查看输出的单词统计情况,具体操作如下:
二.MR文件格式-DB
1>.创建数据库表信息
create database yinzhengjie; use yinzhengjie; create table wordcount(id int,line varchar(100)); insert into wordcount values(1,'hello my name is yinzhengjie'); insert into wordcount values(2,'I am a good boy'); create table wordcount2(word varchar(100),count int);
2>.编写代码
/*
@author :yinzhengjie
Blog:http://www.cnblogs.com/yinzhengjie/tag/Hadoop%E8%BF%9B%E9%98%B6%E4%B9%8B%E8%B7%AF/
EMAIL:y1053419035@qq.com
*/
package cn.org.yinzhengjie.dbformat; import org.apache.hadoop.io.Writable;
import org.apache.hadoop.mapreduce.lib.db.DBWritable; import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException; /**
* 设置数据对应的格式,需要实现两个接口,即Writable, DBWritable。
*/
public class MyDBWritable implements Writable, DBWritable { //注意 : 这里我们定义了2个私有属性,这两个属性分别对应的数据库中的字段,id和line
private int id;
private String line; //wrutable串行化
public void write(DataOutput out) throws IOException {
out.writeInt(id);
out.writeUTF(line);
} //writable反串行化,注意反串行化的顺序要和串行化的顺序保持一致
public void readFields(DataInput in) throws IOException {
id = in.readInt();
line = in.readUTF(); } //DB串行化,设置值的操作
public void write(PreparedStatement st) throws SQLException {
//指定表中的第一列为id列
st.setInt(1, id);
//指定表中的第二列为line列
st.setString(2,line); } //DB反串行,赋值操作
public void readFields(ResultSet rs) throws SQLException {
//读取数据库的第一列,我们赋值给id
id = rs.getInt(1);
//读取数据库的第二列,我们赋值给line
line = rs.getString(2);
} public int getId() {
return id;
} public void setId(int id) {
this.id = id;
} public String getLine() {
return line;
} public void setLine(String line) {
this.line = line;
}
}
MyDBWritable.java 文件内容
/*
@author :yinzhengjie
Blog:http://www.cnblogs.com/yinzhengjie/tag/Hadoop%E8%BF%9B%E9%98%B6%E4%B9%8B%E8%B7%AF/
EMAIL:y1053419035@qq.com
*/
package cn.org.yinzhengjie.dbformat; import org.apache.hadoop.io.Writable;
import org.apache.hadoop.mapreduce.lib.db.DBWritable; import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException; public class MyDBWritable2 implements Writable, DBWritable {
//这两个属性分别对应的数据库中的字段,word和count分别对应的是输出表中的字段哟。
private String word;
private int count;
//wrutable串行化
public void write(DataOutput out) throws IOException {
out.writeUTF(word);
out.writeInt(count);
}
//writable反串行化
public void readFields(DataInput in) throws IOException {
word = in.readUTF();
count = in.readInt(); }
//DB串行化
public void write(PreparedStatement st) throws SQLException {
st.setString(1,word);
st.setInt(2,count); }
//DB反串行
public void readFields(ResultSet rs) throws SQLException {
word = rs.getString(1);
count = rs.getInt(2);
}
public String getWord() {
return word;
}
public void setWord(String word) {
this.word = word;
}
public int getCount() {
return count;
}
public void setCount(int count) {
this.count = count;
}
}
MyDBWritable2.java 文件内容
/*
@author :yinzhengjie
Blog:http://www.cnblogs.com/yinzhengjie/tag/Hadoop%E8%BF%9B%E9%98%B6%E4%B9%8B%E8%B7%AF/
EMAIL:y1053419035@qq.com
*/
package cn.org.yinzhengjie.dbformat; import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper; import java.io.IOException; /**
* 注意MyDBWritable为数据库输入格式哟
*/
public class DBMapper extends Mapper<LongWritable, MyDBWritable, Text, IntWritable> {
@Override
protected void map(LongWritable key, MyDBWritable value, Context context) throws IOException, InterruptedException {
String line = value.getLine();
String[] arr = line.split(" ");
for(String word : arr){
context.write(new Text(word), new IntWritable(1));
}
}
}
DBMapper.java 文件内容
/*
@author :yinzhengjie
Blog:http://www.cnblogs.com/yinzhengjie/tag/Hadoop%E8%BF%9B%E9%98%B6%E4%B9%8B%E8%B7%AF/
EMAIL:y1053419035@qq.com
*/
package cn.org.yinzhengjie.dbformat; import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer; import java.io.IOException; public class DBReducer extends Reducer<Text, IntWritable, MyDBWritable2, NullWritable> {
protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
Integer sum = 0;
for (IntWritable value : values) {
sum += value.get();
}
MyDBWritable2 db = new MyDBWritable2();
//设置需要往数据表中写入数据的值
db.setWord(key.toString());
db.setCount(sum);
//将数据写到到数据库中
context.write(db,NullWritable.get());
}
}
DBReducer.java 文件内容
/*
@author :yinzhengjie
Blog:http://www.cnblogs.com/yinzhengjie/tag/Hadoop%E8%BF%9B%E9%98%B6%E4%B9%8B%E8%B7%AF/
EMAIL:y1053419035@qq.com
*/
package cn.org.yinzhengjie.dbformat; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.db.DBConfiguration;
import org.apache.hadoop.mapreduce.lib.db.DBInputFormat;
import org.apache.hadoop.mapreduce.lib.db.DBOutputFormat; public class DBApp { public static void main(String[] args) throws Exception { Configuration conf = new Configuration();
conf.set("fs.defaultFS","file:///");
Job job = Job.getInstance(conf); job.setJobName("DB");
job.setJarByClass(DBApp.class); job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class); job.setMapperClass(DBMapper.class);
job.setReducerClass(DBReducer.class); String driver = "com.mysql.jdbc.Driver";
String url = "jdbc:mysql://192.168.0.254:5200/yinzhengjie";
String name = "root";
String pass = "yinzhengjie"; DBConfiguration.configureDB(job.getConfiguration(), driver, url, name, pass); DBInputFormat.setInput(job, MyDBWritable.class,"select * from wordcount", "select count(*) from wordcount"); //指定表名为“wordcount2”并指定字段为2
DBOutputFormat.setOutput(job,"wordcount2",2); //指定输入输出格式
job.setInputFormatClass(DBInputFormat.class);
job.setOutputFormatClass(DBOutputFormat.class); job.waitForCompletion(true);
}
}
运行以上代码之后,我们可以查看数据库wordcount2表中的数据是否有新的数据生成,具体操作如下:
Hadoop基础-MapReduce的常用文件格式介绍的更多相关文章
- Hadoop基础-MapReduce入门篇之编写简单的Wordcount测试代码
Hadoop基础-MapReduce入门篇之编写简单的Wordcount测试代码 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 本文主要是记录一写我在学习MapReduce时的一些 ...
- Hadoop基础-MapReduce的工作原理第二弹
Hadoop基础-MapReduce的工作原理第二弹 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.Split(切片) 1>.MapReduce处理的单位(切片) 想必 ...
- Hadoop基础-MapReduce的Join操作
Hadoop基础-MapReduce的Join操作 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.连接操作Map端Join(适合处理小表+大表的情况) no001 no002 ...
- Hadoop基础-MapReduce的排序
Hadoop基础-MapReduce的排序 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.MapReduce的排序分类 1>.部分排序 部分排序是对单个分区进行排序,举个 ...
- Hadoop基础-MapReduce的数据倾斜解决方案
Hadoop基础-MapReduce的数据倾斜解决方案 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.数据倾斜简介 1>.什么是数据倾斜 答:大量数据涌入到某一节点,导致 ...
- Hadoop基础-MapReduce的Partitioner用法案例
Hadoop基础-MapReduce的Partitioner用法案例 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.Partitioner关键代码剖析 1>.返回的分区号 ...
- Hadoop基础-MapReduce的Combiner用法案例
Hadoop基础-MapReduce的Combiner用法案例 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.编写年度最高气温统计 如上图说所示:有一个temp的文件,里面存放 ...
- Hadoop基础-MapReduce的工作原理第一弹
Hadoop基础-MapReduce的工作原理第一弹 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 在本篇博客中,我们将深入学习Hadoop中的MapReduce工作机制,这些知识 ...
- openresty开发系列13--lua基础语法2常用数据类型介绍
openresty开发系列13--lua基础语法2常用数据类型介绍 一)boolean(布尔)布尔类型,可选值 true/false: Lua 中 nil 和 false 为"假" ...
随机推荐
- CSS 中 calc() 函数用法
CSS calc() 函数 calc() 函数用于动态计算长度值. 注意,运算符前后都需要保留一个空格,例如:width: calc(100% - 10px): 任何长度值都可以使用calc()函数进 ...
- Nuxt 开发 - 项目初始化
Nuxt是基于Vue的一个应用框架,采用服务端渲染(SSR),可以让用户的Vue单页面应用(SPA)也可以有利于SEO. 项目初始化 参考:https://zh.nuxtjs.org/guide/in ...
- [BZOJ3809]Gty的二逼妹子序列[莫队+分块]
题意 给出长度为 \(n\) 的序列,\(m\) 次询问,每次给出 \(l,r,a,b\) ,表示询问区间 \([l,r]\) 中,权值在 \([a,b]\) 范围的数的种类数. \(n\leq 10 ...
- Js_封装JQ库为插件
//在jQuery匿名函数中,采用jQuery.extend();方法创建jQuery插件 //在jQuery匿名函数中, 采用对象.属性 = 函数的方式创建jQuery插件 (function ($ ...
- Svn 提示错误:previous operation has not finished 解决方案
svn提交遇到恶心的问题,可能是因为上次cleanup中断后,进入死循环了. 解决方案: 找到你项目的.svn文件,查看是否存在wc.db 网上下载SQLite Expert工具,手动打开wc.db, ...
- Kaggle: Google Analytics Customer Revenue Prediction EDA
前言 内容提要 本文为Kaggle竞赛 Google Analytics Customer Revenue Prediction 的探索性分析 题目要求根据历史顾客访问GStore的数据,预测其中部分 ...
- muduo网络库学习笔记(四) 通过eventfd实现的事件通知机制
目录 muduo网络库学习笔记(四) 通过eventfd实现的事件通知机制 eventfd的使用 eventfd系统函数 使用示例 EventLoop对eventfd的封装 工作时序 runInLoo ...
- VGGNet论文翻译-Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition Karen Simonyan[‡] & Andrew Zi ...
- beta版本“足够好”/测试矩阵
能通过地图鱼相应的地点信息实时交互,便于用户操作. 测试矩阵
- 关于cocos2dx 关键字的问题
今天码代码,在创建新场景的时候,.h文件里 class Game : public cocos2d::Layer没有问题,在Game类里面,声明了它的成员之后,开始在.cpp文件里面实现这个类,到重 ...