DNA序列编码中Hairpin的定义和计算

觉得有用的话,欢迎一起讨论相互学习~Follow Me

参考文献
[1] 张凯. DNA计算核酸编码优化及算法设计[D]. 2008.
[2] Shin, Soo Yong , et al. "Multiobjective evolutionary optimization of DNA sequences for reliable DNA computing." IEEE Transactions on Evolutionary Computation 9.2(2005):143-158.
[3] Shin, Soo Yong , I. H. Lee , and B. T. Zhang . "Evolutionary Multi-Objective Optimization for DNA Sequence Design." (2008).
[4] Shin, Soo Yong , et al. "Evolutionary sequence generation for reliable DNA computing." Congress on Evolutionary Computation IEEE, 2002.
[5] 饶泽书. 基于多目标粒子群的DNA编码算法研究[D]. 2018.

发卡结构约束

[ * ]定义

单链 DNA 分子产生二级结构通常由自身反向折叠而形成,发卡结构为典型的自身折叠结构.许多以特异性杂交反应为基础的 DNA 计算模型,都要求避免单链 DNA 形成二级
结构,这样单链 DNA 分子才能和自身的补链充分有效的发生特异性杂交[1]。

\[Hairpin( x ) = \sum _ { s = S _ { \mathrm { min } } } ^ { \left( l - R _ { \mathrm { min } } \right) / 2 } \sum _ { r = R _ { \mathrm { min } } } ^ { l - 2 s } \sum _ { i = 1 } ^ { l - 2 s - r } T \left( \sum _ { j = 1 } ^ { s } b p \left( x _ { s + i - j} , x _ { s + i + r + j-1} \right) , \frac { s } { 2 } \right)\]

  • 式中s为茎长,Smin为设定的最小茎长。r为环长,Rmin为设定的最小环长,L表示DNA序列长度。在本文中,设置Smin=6,Rmin=6
  • T表示阈值函数,T(x,y),只有在x>y时T(x,y)=x;否则T(x,y)=0,此处表示只有连续匹配达到了当前茎区数量的1/2(即>\(\frac{S}{2}\))才能算作为茎区的结构。
  • bp(x,y)函数表示DNA序列中x和y位置的碱基相互互补的个数,如果相互互补即为1,否则记为0.
  • s表示遍历茎区可能长度,其中 茎区最小长度为人为设定的Smin ,而 茎区最大长度是当环区长度取得最小值Rmin时的茎区长度(l-Rmin)/2
  • r表示遍历环区可能长度,其中 环区最小长度为人为设定的Rmin ,而 **环区最大长度是当茎区长度取得最小值Smin时的环区长度l-2*Smin**
  • i表示DNA序列起始处的索引,其中i最小从1处开始,最大可以到l-2s-r处,其中s和r皆为前两步中确定的值。

不同文章中发卡结构约束的定义及区别

  • 上一章中定义此处标记为 [*]定义 而与其他定义相区别,其他定义则根据其引用的参考文献进行标记,即若此处定义出自于参考文献[1],则将其标记为 [1]定义

    [2]定义


  • 这个pinlen(p,r,i)很奇怪,定义为当假结中心在(p+i+r/2)时,可能的最大的茎区配对可能数 , 在作者2008发表的文章[3]中指出pinlen即为当前假定
    的茎区数。
  • ==但是\(x_{p+i+j}和x_{p+i+r+j}的位置并不是假结茎区中一一对应的,[ * ]定义中是一一对应的关系\)==

    [3]定义

  • 在S.Y.Shin于2008年发表的[3]文章中,提出了如下定义:
  • ==[3] 定义与 [ * ]定义差别在于 [3] 定义中茎区匹配索引比 [ * ] 中均索引大1.==

    [4]定义

  • 在S.Y.Shin于2002年发表的[4]文章中,提出了如下定义:
  • 其中Hairpin(x,c)函数没有明确的数学定义。仅仅是给出一个概念。

    [5]定义

  • \[\operatorname { Hairpin } ( x ) = \sum _ { s = S _ { \min } } ^ { \left( l - R _ { \mathrm { min } } \right) / 2 } \sum _ { r = R _ { \min } } ^ { l - 2 s } \sum _ { i = 1 } ^ { l - 2 s - r } T \left( \sum _ { j = 1 } ^ { s } b p \left( x _ { s + i - j } , x _ { s + i + r + j } \right) , \frac { S } { 2 } \right)\]
  • 与[ * ]的区别在于\(x _ { s + i - j } , x _ { s + i + r + j }[5],x _ { s + i - j } , x _ { s + i + r + j-1 }[ * ]\)

分析与比较

可以看出[ * ]中Hairpin的计算公式较为正确

No J index Expression x Expression y
==*== - \(x _ { s + i - j}\) \(x _ { s + i + r + j-1}\)
- j=1 \(x_{s+i-1}\) \(x_{s+i+r}\)
- j=s \(x _ {i}\) \(x _ { i + r + 2s-1}\)
2 - \(x_{s+i+j}\) \(x_{s+i+r+j}\)
- j=1 \(x_{s+i+1}\) \(x_{s+i+r+1}\)
- j=s \(x_{i+2s}\) \(x_{i+r+2s}\)
3 - \(x _ { s + i - j+1}\) \(x _ { s + i + r + j}\)
- j=1 \(x_{s+i}\) \(x_{s+i+r+1}\)
- j=s \(x _ {i+1}\) \(x _ { i + r + 2s}\)
5 - \(x _ { s + i - j}\) \(x _ { s + i + r + j}\)
- j=1 \(x_{s+i-1}\) \(x_{s+i+r=1}\)
- j=s \(x _ {i}\) \(x _ { i + r + 2s}\)

DNA序列编码中Hairpin的定义和计算的更多相关文章

  1. 在博客文章中使用mermaid 定义流程图,序列图,甘特图

    概述 Mermaid(美人鱼)是一套markdown语法规范,用来在markdown文档中定义图形,包括流程图.序列图.甘特图等等. 它的官方网站是 https://mermaid-js.github ...

  2. [LeetCode] Repeated DNA Sequences 求重复的DNA序列

    All DNA is composed of a series of nucleotides abbreviated as A, C, G, and T, for example: "ACG ...

  3. 华为OJ平台——DNA序列

    题目描述: 一个DNA序列由A/C/G/T四个字母的排列组合组成.G和C的比例(定义为GC-Ratio)是序列中G和C两个字母的总的出现次数除以总的字母数目(也就是序列长度).在基因工程中,这个比例非 ...

  4. DNA序列对齐问题

    问题描述: 该问题在算法导论中引申自求解两个DNA序列相似度的问题. 可以从很多角度定义两个DNA序列的相似度,其中有一种定义方法就是通过序列对齐的方式来定义其相似度. 给定两个DNA序列A和B,对齐 ...

  5. [DeeplearningAI笔记]序列模型1.1-1.2序列模型及其数学符号定义

    5.1循环序列模型 觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.1什么是序列模型 在进行语音识别时,给定了一个输入音频片段X,并要求输出片段对应的文字记录Y,这个例子中的输入和输出都输 ...

  6. python实现DNA序列字符串转换,互补链,反向链,反向互补链

    在生物信息学分析中,经常对DNA序列进行一系列操作,包括子序列截取,互补序列获取,反向序列获取,反向互补序列获取.在python语言中,可编写如下函数完成这些简单功能. 子序列截取 python中对序 ...

  7. Leetcode 187.重复的DNA序列

    重复的DNA序列 所有 DNA 由一系列缩写为 A,C,G 和 T 的核苷酸组成,例如:"ACGAATTCCG".在研究 DNA 时,识别 DNA 中的重复序列有时会对研究非常有帮 ...

  8. [LeetCode] 187. Repeated DNA Sequences 求重复的DNA序列

    All DNA is composed of a series of nucleotides abbreviated as A, C, G, and T, for example: "ACG ...

  9. 利用Python【Orange】结合DNA序列进行人种预测

    http://blog.csdn.net/jj12345jj198999/article/details/8951120 coursera上 web intelligence and big data ...

随机推荐

  1. 您需要来自XXX的权限才能对此文件夹进行更改

    解决办法: cmd命令:del/f/s/q 文件夹

  2. LeetCode 3Sum Closest (Two pointers)

    题意 Given an array S of n integers, find three integers in S such that the sum is closest to a given ...

  3. redis安装启动和数据操作

    redis安装和启动 1.安装包下载地址 >> redis基本数据类型 string(字符串和数值) .list(列表/队列).hashmap(哈希表[键唯一]). set(集合[值唯一] ...

  4. Jmeter(二十二)_脚本上传Gitlab

    Docker部署接口自动化持续集成环境第四步,代码上传到远程仓库! 接上文:Ubuntu部署jmeter与ant Gitlab在容器中部署好了之后,本地直接打开.我们可以在里面创建项目,上传脚本. 新 ...

  5. leetcode之有序数组的平方

    题目描述: 给定一个按非递减顺序排序的整数数组 A,返回每个数字的平方组成的新数组,要求也按非递减顺序排序. 示例 1: 输入:[-4,-1,0,3,10] 输出:[0,1,9,16,100] 示例 ...

  6. PAT甲题题解-1110. Complete Binary Tree (25)-(判断是否为完全二叉树)

    题意:判断一个节点为n的二叉树是否为完全二叉树.Yes输出完全二叉树的最后一个节点,No输出根节点. 建树,然后分别将该树与节点树为n的二叉树相比较,统计对应的节点个数,如果为n,则为完全二叉树,否则 ...

  7. GoldNumber游戏比赛成绩公布

    比赛介绍:http://www.cnblogs.com/xinz/p/3347418.html 黄金点游戏: N个同学(N通常大于10),每人写一个0~100之间的有理数 (不包括0或100),交给裁 ...

  8. do

    http://www.cnblogs.com/xdp-gacl/p/3791993.html http://blog.sina.com.cn/s/blog_95c8f1ac010198j2.html

  9. Ubuntu18.04 安装后的简单实用设置[未完成]

    1. 安装完成. 2. 更新 sudo apt-get update 3. 修改vi 放置键盘错位的问题 编辑文件/etc/vim/vimrc.tiny 将“compatible”改成“nocompa ...

  10. C# 项目迁移 Microsoft.VisualStudio.Tools.Office.BuildTasks 生成解决方法报错:请确认 <UsingTask> 声明正确,该程序集及其所有依赖项都可用

    问题定位: 1.在Server2003上使用vs2010开发的项目,移到Win8上,同样使用vs2010打开.在生成解决方案的时候有如下报错: 未能从程序集 Microsoft.VisualStudi ...