分类:简单计算, 收集到映射表中 , 群组和分组, 下游收集器, 约简操作 reduce()

ArrayList<String> arrayList = new ArrayList<>();
arrayList.add("aa");
arrayList.add("aA");
arrayList.add("bbb");
arrayList.add("a1c2");
arrayList.add("a1a");
arrayList.add("c"); Supplier<Stream<String>> supplier = ()->arrayList.stream();

直接输出结果

/***
* 直接输出结果
*/
//1. iterator()相关 ->旧式迭代器
//(1)iterator
System.out.println("----直接输出结果--旧式迭代器-----start--");
Iterator<String> iterator = arrayList.stream().parallel().iterator();
while(iterator.hasNext()){
System.out.println(iterator.next());
}
System.out.println(); //forEachRemaining()
arrayList.iterator().forEachRemaining((x)->System.out.println(x.toString()));
System.out.println("----直接输出结果--旧式迭代器-----end--");
System.out.println(); //(2) spliterator()
Spliterator<String> spliterator = arrayList.stream().spliterator();
while(spliterator.tryAdvance((n)->System.out.println(n))){}
System.out.println(); spliterator = arrayList.stream().spliterator();
spliterator.forEachRemaining((n)->System.out.println(n));
System.out.println(); Spliterator<String> spliterator2 = arrayList.stream().spliterator().trySplit();
spliterator2.forEachRemaining((n)->System.out.println(n));
spliterator2.forEachRemaining((n)->System.out.println(n));
System.out.println(); //2. forEach() ->parallel()返回的结果顺序不确定
System.out.println("----直接输出结果--.stream().parallel().forEach()-----start--");
arrayList.stream().parallel().forEach(n->System.out.println(n));
System.out.println("----直接输出结果--.stream().parallel().forEach()-----end--");
System.out.println(); //3. forEachOrdered() ->parallel()返回的结果顺序与流中的顺序相同
System.out.println("----直接输出结果--.stream().parallel().forEachOrdered()-----start--");
arrayList.stream().parallel().forEachOrdered(n->System.out.println(n));
System.out.println("----直接输出结果--.stream().parallel().forEachOrdered()-----end--");
System.out.println();
System.out.println();
System.out.println();
System.out.println();
System.out.println();

简单的计算

//1. count()	数量
System.out.println(supplier.get().count());
System.out.println(); //2. max() 最大数值
System.out.println(supplier.get().max(String::compareToIgnoreCase).orElse(""));
System.out.println(); //3. min() 最小数值
System.out.println(supplier.get().min(String::compareToIgnoreCase).orElse(""));
System.out.println(); //4. findFirst(), 非空集合中第一个
//一般结合filer()==>findFirst==>找到匹配条件中第一个
String findFirstValue = supplier.get().findFirst().orElse("");
System.out.println(findFirstValue); findFirstValue = supplier.get().filter(x->x.length()>2).findFirst().orElse("");
System.out.println(findFirstValue); findFirstValue = supplier.get().filter(x->x.length()>2).sorted().findFirst().orElse("");
System.out.println(findFirstValue); findFirstValue = supplier.get().filter(x->x.length()>2).sorted(Comparator.comparing(String::length).thenComparing(String::compareTo).reversed()).findFirst().orElse("");
System.out.println(findFirstValue);
System.out.println(); //5. findAny(), 非空集合中任意一个
//一般结合filer()==>findAny==>找到匹配任意匹配,表示能够匹配
String findAnyValue = supplier.get().filter(x->x.length()>4).findAny().orElse("");
System.out.println(!findAnyValue.equals(""));
System.out.println(); //6. anyMatch(), 任意元素有无匹配
//直接使用看是否有匹配
boolean anyMatch = supplier.get().anyMatch(x->x.length()>3);
System.out.println(anyMatch);
System.out.println(); //7. allMatch(), 所有元素有无匹配
//直接使用看是否有匹配
boolean allMatch = supplier.get().allMatch(x->x.length()>0);
System.out.println(allMatch);
System.out.println(); //8. noneMatch(), 没有任意元素有无匹配
//直接使用看是否有匹配
boolean noneMatch = supplier.get().noneMatch(x->x.length()>4);
System.out.println(noneMatch);
System.out.println();

收集到映射表中

/***
* 收集到映射表中
*/
//1.toArray()
System.out.println("----收集到数据结构中--.stream().toArray()-----start--");
String[] stringArray = arrayList.stream().toArray(String[]::new);
System.out.println(Arrays.toString(stringArray));
System.out.println(); System.out.println(Arrays.toString(arrayList.stream().toArray()));
System.out.println("----收集到数据结构中--.stream().toArray()-----end--");
System.out.println(); //2.collect() 收集元素到集合, 总和/平均值/最大/最小值
ArrayList<NamePhoneEmail> myList = new ArrayList<>();
myList.add(new NamePhoneEmail("Larry", "555-5555", "Larry@HerbSchildt.com"));
myList.add(new NamePhoneEmail("James", "555-4444", "James@HerbSchildt.com"));
myList.add(new NamePhoneEmail("Mary", "555-3333", "Mary@HerbSchildt.com")); //(1) toList() 使用Collectors.toList()
System.out.println("----收集到数据结构中--.stream().map().collect(.toList()).forEach()-----start-------");
myList.stream().map((a) -> new NamePhone(a.name, a.phonenum)).collect(Collectors.toList()).forEach(n->System.out.println(n.name+" "+n.phonenum));
System.out.println(); //在循环之前先做map()处理
myList.stream().map((a) -> a.toString()).collect(Collectors.toList()).forEach(System.out::println);
System.out.println("----收集到数据结构中--.stream().map().collect(.toList()).forEach()-----end-------");
System.out.println();
System.out.println(); //(2) toSet() 使用Collectors.toSet()
System.out.println("----收集到数据结构中--.stream().map().collect(.toSet()).forEach()-----start-------");
myList.stream().map((a) -> new NamePhone(a.name, a.phonenum)).collect(Collectors.toSet()).forEach(n->System.out.println(n.name+" "+n.phonenum));
System.out.println("----收集到数据结构中--.stream().map().collect(.toSet()).forEach()-----end-------");
System.out.println();
System.out.println(); //(3) ->TreeSet 使用Collectors.toCollection() TreeSet自动排序
System.out.println("----收集到数据结构中--.stream().collect(Collectors.toCollection(TreeSet::new)).forEach()-----start-------");
TreeSet<String> toTreeSet = arrayList.stream().collect(Collectors.toCollection(TreeSet::new));
toTreeSet.forEach(n->System.out.println(n));
System.out.println("----收集到数据结构中--.stream().collect(Collectors.toCollection(TreeSet::new)).forEach()-----end-------");
System.out.println();
System.out.println(); //(4) ->ArrayList 使用Collectors.toCollection()
System.out.println("----收集到数据结构中--.stream().collect(Collectors.toCollection(ArrayList::new)).forEach()-----start-------");
ArrayList<String> toArrayList = arrayList.stream().collect(Collectors.toCollection(ArrayList::new));
toArrayList.forEach(n->System.out.println(n));
System.out.println("----收集到数据结构中--.stream().collect(Collectors.toCollection(ArrayList::new)).forEach()-----end-------");
System.out.println();
System.out.println();
System.out.println();
System.out.println(); //(5) ->toMap 收集到映射表中 //1) 指定keyMapper和valueMapper
System.out.println("----收集到数据结构中--.stream().collect(Collectors.toMap(keyMapper, valueMapper)).forEach()-----start-------");
Map<String, String> toMap = myList.stream().collect(
Collectors.toMap(
NamePhoneEmail::getName, //keyMapper
NamePhoneEmail::getPhonenum //valueMapper
));
toMap.entrySet().forEach((n)->System.out.println(n.getKey()+" "+n.getValue()));
System.out.println("----收集到数据结构中--.stream().collect(Collectors.toMap(keyMapper, valueMapper)).forEach()-----end-------");
System.out.println();
System.out.println(); //2) 指定keyMapper, valueMapper, mergeFunction
System.out.println("----收集到数据结构中--.stream().collect(Collectors.toMap(keyMapper, valueMapper, mergeFunction)).forEach()-----start-------");
Stream<Locale> localesStream = Stream.of(Locale.getAvailableLocales());
//通过指定的mergeFunction, 解决冲突
Map<String, String> languageNames = localesStream.collect(
Collectors.toMap(
Locale::getDisplayLanguage, //keyMapper
l->l.getDisplayLanguage(l), //valueMapper
(existingValue, newValue)->existingValue //mergeFunction, 合并两个 keyMapper 相同的值
)); languageNames.entrySet().forEach((n)->System.out.println(n.getKey()+" "+n.getValue()));
System.out.println("----收集到数据结构中--.stream().collect(Collectors.toMap(keyMapper, valueMapper, mergeFunction)).forEach()-----end-------");
System.out.println(); System.out.println("----收集到数据结构中--.stream().collect(Collectors.toMap(keyMapper, valueMapper(Set), mergeFunction)).forEach()-----start-------");
localesStream = Stream.of(Locale.getAvailableLocales());
Map<String, Set<String>> countryLanguageSets = localesStream.collect(
Collectors.toMap(
Locale::getDisplayCountry, //keyMapper
l -> Collections.singleton(l.getDisplayLanguage()), //valueMapper Returns an immutable set containing only the specified object
(a, b) -> { // union of a and b //mergeFunction
Set<String> union = new HashSet<>(a);
union.addAll(b);
return union;
}
));
countryLanguageSets.entrySet().forEach((n)->System.out.println(n.getKey()+" "+n.getValue()));
System.out.println("----收集到数据结构中--.stream().collect(Collectors.toMap(keyMapper, valueMapper(Set), mergeFunction)).forEach()-----end-------");
System.out.println();
System.out.println(); //(6) to LinkedList
System.out.println("----收集到数据结构中--.stream().collect(supplier, accumulator, combiner)--to LinkedList---start-------");
LinkedList<NamePhone> nkList = myList.stream().map((a) -> new NamePhone(a.name, a.phonenum)).collect(
()->new LinkedList<>(),
(list, element) -> list.add(element),
(listA, listB)->listA.addAll(listB)
);
nkList.forEach(n->System.out.println(n.name+" "+n.phonenum));
System.out.println("----收集到数据结构中--.stream().collect(supplier, accumulator, combiner)--to LinkedList---end-------");
System.out.println();
System.out.println(); //(7) to HashSet
System.out.println("----收集到数据结构中--.stream().collect(supplier, accumulator, combiner)--to HashSet---start-------");
HashSet<NamePhone> hsSet = myList.stream().map((a) -> new NamePhone(a.name, a.phonenum)).collect(
HashSet::new,
HashSet::add,
HashSet::addAll
);
hsSet.forEach(n->System.out.println(n.name+" "+n.phonenum));
System.out.println("----收集到数据结构中--.stream().collect(supplier, accumulator, combiner)--to HashSet---end-------");
System.out.println();
System.out.println(); //(8)总和, 平均值, 最大值, 最小值
ArrayList<Integer> integerList = new ArrayList<>();
integerList.add(23);
integerList.add(66);
integerList.add(888);
integerList.add(999);
integerList.add(1024); //总和
Integer integerCollect = integerList.stream().collect(Collectors.summingInt(Integer::intValue));
System.out.println(integerCollect); //总和, 数目, 平均值, 最大值, 最小值
IntSummaryStatistics intSummaryStatistics = integerList.stream().collect(Collectors.summarizingInt(Integer::intValue));
System.out.println(intSummaryStatistics.getSum());
System.out.println(intSummaryStatistics.getCount());
System.out.println(intSummaryStatistics.getAverage());
System.out.println(intSummaryStatistics.getMax());
System.out.println(intSummaryStatistics.getMin());
System.out.println("------intSummaryStatistics-------"); ArrayList<Long> longList = new ArrayList<>();
longList.add(23l);
longList.add(66l);
longList.add(888l);
longList.add(999l);
longList.add(1024l); Long longCollect = longList.stream().collect(Collectors.summingLong(Long::longValue));
System.out.println(longCollect); LongSummaryStatistics longSummaryStatistics = longList.stream().collect(Collectors.summarizingLong(Long::longValue));
System.out.println(longSummaryStatistics.getSum());
System.out.println(longSummaryStatistics.getCount());
System.out.println(longSummaryStatistics.getAverage());
System.out.println(longSummaryStatistics.getMax());
System.out.println(longSummaryStatistics.getMin());
System.out.println("------longSummaryStatistics-------"); ArrayList<Double> doubleList = new ArrayList<>();
doubleList.add(23.2);
doubleList.add(66.3);
doubleList.add(888.5);
doubleList.add(999.6);
doubleList.add(1024.8); Double doubleCollect = doubleList.stream().collect(Collectors.summingDouble(Double::doubleValue));
System.out.println(doubleCollect); DoubleSummaryStatistics doubleSummaryStatistics = doubleList.stream().collect(Collectors.summarizingDouble(Double::doubleValue));
System.out.println(doubleSummaryStatistics.getSum());
System.out.println(doubleSummaryStatistics.getCount());
System.out.println(doubleSummaryStatistics.getAverage());
System.out.println(doubleSummaryStatistics.getMax());
System.out.println(doubleSummaryStatistics.getMin());
System.out.println("------doubleSummaryStatistics-------"); //(9) joining() 指定连接符
System.out.println("----收集到数据结构中--.stream().collect(Collectors.joining())-----start-------");
String collectJoining = myList.stream().map((a) -> a.email).collect(Collectors.joining());
System.out.println(collectJoining); //指定连接符
collectJoining = myList.stream().map((a) -> a.email).collect(Collectors.joining(";"));
System.out.println(collectJoining); //指定连接符, 前缀, 后缀
collectJoining = myList.stream().map((a) -> a.email).collect(Collectors.joining(";","prefix "," suffix"));
System.out.println(collectJoining);
System.out.println("----收集到数据结构中--.stream().collect(Collectors.joining())-----end-------");
System.out.println();
System.out.println();

群组和分组
/***
* 群组和分组
*/ //1. groupingBy() //1)直接使用 groupingBy() 按指定元素分组
System.out.println("----收集到数据结构中--.stream().collect(Collectors.groupingBy(element)).forEach()-----start-------");
localesStream = Stream.of(Locale.getAvailableLocales());
Map<String, List<Locale>> countryToLocalsMap = localesStream.collect(Collectors.groupingBy(Locale::getCountry));
countryToLocalsMap.entrySet().forEach((n)->{
System.out.print(n.getKey()+":");
n.getValue().forEach(locale->System.out.print(locale.getDisplayLanguage()+","));
System.out.println();
});
System.out.println("----收集到数据结构中--.stream().collect(Collectors.groupingBy(element)).forEach()-----end-------");
System.out.println();
System.out.println(); //2) groupingBy后toList, 和直接使用.groupingBy(element) 结果相同
System.out.println("----收集到数据结构中--.stream().collect(Collectors.groupingBy(element, toList)).forEach()-----start-------");
localesStream = Stream.of(Locale.getAvailableLocales());
Map<String, List<Locale>> groupingByToList = localesStream.collect(Collectors.groupingBy(Locale::getCountry, Collectors.toList()));
groupingByToList.entrySet().forEach((n)->{
System.out.print(n.getKey()+":");
n.getValue().forEach(locale->System.out.print(locale.getDisplayLanguage()+","));
System.out.println();
});
System.out.println("----收集到数据结构中--.stream().collect(Collectors.groupingBy(element, toList)).forEach()-----end-------");
System.out.println();
System.out.println(); //3) groupingBy后toSet
System.out.println("----收集到数据结构中--.stream().collect(Collectors.groupingBy(element, toSet)).forEach()-----start-------");
localesStream = Stream.of(Locale.getAvailableLocales());
Map<String, Set<Locale>> groupingByToSet = localesStream.collect(Collectors.groupingBy(Locale::getCountry, Collectors.toSet()));
groupingByToSet.entrySet().forEach((n)->{
System.out.print(n.getKey()+":");
n.getValue().forEach(locale->System.out.print(locale.getDisplayLanguage()+","));
System.out.println();
});
System.out.println("----收集到数据结构中--.stream().collect(Collectors.groupingBy(element, toSet)).forEach()-----end-------");
System.out.println();
System.out.println();
System.out.println(); //4) groupingByConcurrent() 得到一个并行映射表
System.out.println("----收集到数据结构中--.stream().collect(Collectors.groupingByConcurrent(element)).forEach()-----start-------");
localesStream = Stream.of(Locale.getAvailableLocales());
countryToLocalsMap = localesStream.collect(Collectors.groupingByConcurrent(Locale::getCountry));
countryToLocalsMap.entrySet().forEach((n)->{
System.out.print(n.getKey()+":");
n.getValue().forEach(locale->System.out.print(locale.getDisplayLanguage()+","));
System.out.println();
});
System.out.println("----收集到数据结构中--.stream().collect(Collectors.groupingByConcurrent(element)).forEach()-----end-------");
System.out.println();
System.out.println();
System.out.println(); //a) groupingByConcurrent后toList, 和直接使用.groupingByConcurrent(element) 结果相同
//b) groupingByConcurrent后toSet //5)使用partitioningBy() 按照指定条件(true or false)分组
System.out.println("----收集到数据结构中--.stream().collect(Collectors.partitioningBy(Predicate<? super T> predicate)).forEach()-----start-------");
localesStream = Stream.of(Locale.getAvailableLocales());
Map<Boolean, List<Locale>> booleanLocalesStream = localesStream.collect(Collectors.partitioningBy((Locale l)->l.getCountry().equals("CN")));
List<Locale> trueList = booleanLocalesStream.get(true);
System.out.println("trueList "+trueList); List<Locale> falseList = booleanLocalesStream.get(false);
System.out.println("falseList "+falseList); System.out.println("----收集到数据结构中--.stream().collect(Collectors.partitioningBy(Predicate<? super T> predicate)).forEach()-----end-------");
System.out.println();
System.out.println();
System.out.println(); //a) partitioningBy后toList, 和直接使用.partitioningBy(element) 结果相同
//b) partitioningBy后toSet
下游收集器
/***
* 下游收集器
*/ ArrayList<City> cityArrayList = new ArrayList<>();
cityArrayList.add(new City("AAA", "0001", 1234, 1234, 1234.1));
cityArrayList.add(new City("ABA", "0001", 4321, 4321, 4321.2)); cityArrayList.add(new City("BAA", "0002", 1004, 1004, 1004.6));
cityArrayList.add(new City("BBA", "0002", 1034, 1034, 1034.8)); //1. counting() //在groupingBy(), groupingByConcurrent(), partitioningBy()之后, 处理下游(接下来)的值
//1) Collectors.counting() 计算收集到的元素个数
System.out.println("----收集到数据结构中--.stream().collect(groupingBy(), counting()).forEach()-----start-------");
localesStream = Stream.of(Locale.getAvailableLocales());
Map<String, Long> countryToLocalsCountMap = localesStream.collect(Collectors.groupingBy(Locale::getCountry, Collectors.counting()));
countryToLocalsCountMap.entrySet().forEach((n)->System.out.println(n.getKey()+" , counting:"+n.getValue()));
System.out.println("----收集到数据结构中--.stream().collect(groupingBy(), counting()).forEach()-----end-------");
System.out.println();
System.out.println(); System.out.println("----收集到数据结构中--.stream().collect(groupingByConcurrent(), counting()).forEach()-----start-------");
localesStream = Stream.of(Locale.getAvailableLocales());
ConcurrentMap<String, Long> countryToLocalsConcurrentCountMap = localesStream.collect(Collectors.groupingByConcurrent(Locale::getCountry, Collectors.counting()));
countryToLocalsConcurrentCountMap.entrySet().forEach((n)->System.out.println(n.getKey()+" , counting:"+n.getValue()));
System.out.println("----收集到数据结构中--.stream().collect(groupingByConcurrent(), counting()).forEach()-----end-------");
System.out.println();
System.out.println(); System.out.println("----收集到数据结构中--.stream().collect(partitioningBy(), counting()).forEach()-----start-------");
localesStream = Stream.of(Locale.getAvailableLocales());
Map<Boolean, Long> booleanLocalesMap = localesStream.collect(Collectors.partitioningBy((Locale l)->l.getCountry().equals("CN"), Collectors.counting()));
System.out.println("trueList count:"+booleanLocalesMap.get(true));
System.out.println("falseList count:"+booleanLocalesMap.get(false)); booleanLocalesMap.entrySet().forEach((n)->System.out.println(n.getKey()+" , counting:"+n.getValue())); System.out.println("----收集到数据结构中--.stream().collect(partitioningBy(), counting()).forEach()-----end-------");
System.out.println();
System.out.println(); //2. Collectors.summing() 计算收集到的元素的和 System.out.println("----收集到数据结构中--.stream().collect(groupingBy(), summingInt()).forEach()-----start-------");
Map<String, Integer> collectCitySummingIntMap = cityArrayList.stream().collect(Collectors.groupingBy(City::getState, Collectors.summingInt(City::getIntPopulation)));
collectCitySummingIntMap.entrySet().forEach((n)->System.out.println(n.getKey()+" , summingInt:"+n.getValue()));
System.out.println("----收集到数据结构中--.stream().collect(groupingBy(), summingInt()).forEach()-----end-------");
System.out.println();
System.out.println(); System.out.println("----收集到数据结构中--.stream().collect(groupingBy(), summingLong()).forEach()-----start-------");
Map<String, Long> collectCitySummingLongMap = cityArrayList.stream().collect(Collectors.groupingBy(City::getState, Collectors.summingLong(City::getLongPopulation)));
collectCitySummingLongMap.entrySet().forEach((n)->System.out.println(n.getKey()+" , summingLong:"+n.getValue()));
System.out.println("----收集到数据结构中--.stream().collect(groupingBy(), summingLong()).forEach()-----end-------");
System.out.println();
System.out.println(); System.out.println("----收集到数据结构中--.stream().collect(groupingBy(), summingDouble()).forEach()-----start-------");
Map<String, Double> collectCitySummingDoubleMap = cityArrayList.stream().collect(Collectors.groupingBy(City::getState, Collectors.summingDouble(City::getDoublePopulation)));
collectCitySummingDoubleMap.entrySet().forEach((n)->System.out.println(n.getKey()+" , summingDouble:"+n.getValue()));
System.out.println("----收集到数据结构中--.stream().collect(groupingBy(), summingDouble()).forEach()-----end-------");
System.out.println();
System.out.println(); //3. Collectors.maxBy() 计算收集到的元素的最大值 传入比较器
System.out.println("----收集到数据结构中--.stream().collect(groupingBy(), maxBy()).forEach()-----start-------");
Map<String, Optional<City>> collectCityMaxIntMap = cityArrayList.stream().collect(Collectors.groupingBy(City::getState, Collectors.maxBy(Comparator.comparing(City::getIntPopulation))));
collectCityMaxIntMap.entrySet().forEach((n)->System.out.println(n.getKey()+" , getIntPopulation maxBy:"+n.getValue().get().getIntPopulation()));
System.out.println("----收集到数据结构中--.stream().collect(groupingBy(), maxBy()).forEach()-----end-------");
System.out.println();
System.out.println(); //4. Collectors.minBy() 计算收集到的元素的最小值
System.out.println("----收集到数据结构中--.stream().collect(groupingBy(), minBy()).forEach()-----start-------");
Map<String, Optional<City>> collectCityMinIntMap = cityArrayList.stream().collect(Collectors.groupingBy(City::getState, Collectors.minBy(Comparator.comparing(City::getIntPopulation))));
collectCityMinIntMap.entrySet().forEach((n)->System.out.println(n.getKey()+" , getIntPopulation minBy:"+n.getValue().get().getIntPopulation()));
System.out.println("----收集到数据结构中--.stream().collect(groupingBy(), minBy()).forEach()-----end-------");
System.out.println();
System.out.println(); //5. Collectors.mapping() ** 两层操作,第一遍groupby(), 第二遍再mapping()
//两层操作,第一层,按照getState分组后;第二层,拿getName得最大
System.out.println("----收集到数据结构中--.stream().collect(groupingBy(), mapping()).forEach()-----start-------");
Map<String, Optional<String>> collectCityMaxStatusMap = cityArrayList.stream().collect(Collectors.groupingBy(City::getState, Collectors.mapping(City::getName, Collectors.maxBy(String::compareTo))));
collectCityMaxStatusMap.entrySet().forEach((n)->System.out.println(n.getKey()+" , collectCityMaxStatusMap maxBy:"+n.getValue().get()));
System.out.println("----收集到数据结构中--.stream().collect(groupingBy(), mapping()).forEach()-----end-------");
System.out.println();
System.out.println(); //可以调用min()
约简操作 reduce()

/***
* 约简操作 reduce() 从流中计算值
*
* V1 op V2 op V3 ... op VN
*
* 约简操作中, 流中元素的顺序不能有限制,
* 可以应用于约简操作的: 求和, 乘积, 字符串连接,求最大值, 求最小值, 求集合的并和交
* 不可应用于约简操作的: 减法, 除法
*/ List<Integer> integerValues = Arrays.asList(11,22,33,44,55,66); //1. 简单的示例
//求和, 最大值, 最小值
Optional<Integer> sumOptional = integerValues.stream().reduce(Integer::sum);//(x,y) -> (x+y)
if(sumOptional.isPresent()){
System.out.println(sumOptional.get());
} Optional<Integer> maxOptional = integerValues.stream().reduce(Integer::max);
if(maxOptional.isPresent()){
System.out.println(maxOptional.get());
} Optional<Integer> minOptional = integerValues.stream().reduce(Integer::min);
if(minOptional.isPresent()){
System.out.println(minOptional.get());
} Optional<Integer> multiplyOptional = integerValues.stream().reduce((x,y)->(x*y));
if(multiplyOptional.isPresent()){
System.out.println(multiplyOptional.get());
} //2. 传入初始值(幺元值), 作为计算的起点 stream()
//T reduce(T identity, BinaryOperator<T> accumulator)
//identity只在第一次使用
/**
a:1 b:11
a:11 b:22
a:242 b:33
a:7986 b:44
a:351384 b:55
a:19326120 b:66
1275523920
*/
Integer reduce = integerValues.stream().reduce(1, (a,b)->{
System.out.println("a:"+a+" b:"+b);
return a+b;
});
System.out.println(reduce); //3. 传入初始值(幺元值), 作为计算的起点; parallelStream()
//<U> U reduce(U identity, BiFunction<U, ? super T, U> accumulator, BinaryOperator<U> combiner)
//identity每次都会使用, 和accumulator结合使用时
//combiner用来处理accumulator的结果
//使用stream()时combiner不起作用; 只有parallelStream() 并行流 时combiner才起作用
Integer reduce2 = integerValues.parallelStream().reduce(
1,
(a,b)->{
System.out.println("a+b a:"+a+" b:"+b);
return a+b;
},
(a,b)->{
System.out.println("a*b a:"+a+" b:"+b);
return a*b;
}
);
System.out.println(reduce2);

辅助类

class City{
private String name;
private String state;
private int intPopulation;
private long longPopulation;
private double doublePopulation; public City(String name, String state, int intPopulation, long longPopulation, double doublePopulation) {
this.name = name;
this.state = state;
this.intPopulation = intPopulation;
this.longPopulation = longPopulation;
this.doublePopulation = doublePopulation;
} public String getName() {
return name;
} public void setName(String name) {
this.name = name;
} public String getState() {
return state;
} public void setState(String state) {
this.state = state;
} public int getIntPopulation() {
return intPopulation;
} public void setIntPopulation(int intPopulation) {
this.intPopulation = intPopulation;
} public long getLongPopulation() {
return longPopulation;
} public void setLongPopulation(long longPopulation) {
this.longPopulation = longPopulation;
} public double getDoublePopulation() {
return doublePopulation;
} public void setDoublePopulation(double doublePopulation) {
this.doublePopulation = doublePopulation;
} } class NamePhoneEmail {
String name;
String phonenum;
String email; NamePhoneEmail(String n, String p, String e) {
name = n;
phonenum = p;
email = e;
} public String getName() {
return name;
} public void setName(String name) {
this.name = name;
} public String getPhonenum() {
return phonenum;
} public void setPhonenum(String phonenum) {
this.phonenum = phonenum;
} public String getEmail() {
return email;
} public void setEmail(String email) {
this.email = email;
} @Override
public String toString() {
return "name:"+name+",phonenum:"+phonenum+",email:"+email;
}
} class NamePhone {
String name;
String phonenum; NamePhone(String n, String p) {
name = n;
phonenum = p;
}
}











J2SE 8的流库 --- 收集处理结果的更多相关文章

  1. J2SE 8的流库 --- 生成流

    本文介绍了如何产生J2SE 8的流, 包括基本类型的流IntStream, LongStream, DoubleStream . 展现流的方法 public static <T> void ...

  2. J2SE 8的流库 --- 转换流, 得到的还是流

    流的转换, 按照条件过滤/映射/摊平/截取/丢弃/连接/去重/排序. 辅助方法 public static int myCompare(String x, String y) { if(x.lengt ...

  3. J2SE 8的流库 --- 基本类型流的使用

    展现流的方法 public static <T> void show(String title, Stream<T> stream){ System.out.println(& ...

  4. [一] java8 函数式编程入门 什么是函数式编程 函数接口概念 流和收集器基本概念

      本文是针对于java8引入函数式编程概念以及stream流相关的一些简单介绍 什么是函数式编程?   java程序员第一反应可能会理解成类的成员方法一类的东西 此处并不是这个含义,更接近是数学上的 ...

  5. Java SE 8 的流库学习笔记

    前言:流提供了一种让我们可以在比集合更高的概念级别上指定计算的数据视图.如: //使用foreach迭代 long count = 0; for (String w : words) { if (w. ...

  6. 开源框架】Android之史上最全最简单最有用的第三方开源库收集整理,有助于快速开发

    [原][开源框架]Android之史上最全最简单最有用的第三方开源库收集整理,有助于快速开发,欢迎各位... 时间 2015-01-05 10:08:18 我是程序猿,我为自己代言 原文  http: ...

  7. Java SE 8 流库

    1. 流的作用 通过使用流,说明想要完成什么任务,而不是说明如何去实现它,将操作的调度留给具体实现去解决: 实例:假如我们想要计算某个属性的平均值,那么我们就可以指定数据源和属性,然后,流库就可以对计 ...

  8. KiCad 开源元件库收集

    KiCad 开源元件库收集 KiCad 官方 https://gitee.com/KiCAD-CN (国内镜像) https://github.com/kicad Digikey KiCad 元件库 ...

  9. Java SE 8 流库(一)

    1. 流的作用 通过使用流,说明想要完成什么任务,而不是说明如何去实现它,将操作的调度留给具体实现去解决: 实例:假如我们想要计算某个属性的平均值,那么我们就可以指定数据源和属性,然后,流库就可以对计 ...

随机推荐

  1. BIO & NIO & NIO常见框架

    BIO & NIO BIO - Blocking IO - 同步式阻塞式IO --- UDP/TCP NIO - New  IO - 同步式非阻塞式IO AIO  - Asynchronous ...

  2. java1.8 新特性(五 如何使用filter,limit ,skip ,distinct map flatmap ,collect 操作 java集合)

    使用filter 根据 条件筛选 出结果:例如 找出 user 中 age >=15 的用户 package lambda.stream; /** * @author 作者:cb * @vers ...

  3. 客户端负载均衡Feign之二:Feign 功能介绍

    一.Ribboon配置 在Spring cloud Feign中客户端负载均衡是通过Spring cloud Ribbon实现的,所以我们可以直接通过配置Ribbon客户端的方式来自定义各个服务客户端 ...

  4. spring4.0之八:Groovy DSL

    4.0的一个重要特征就是完全支持Groovy,Groovy是Spring主导的一门基于JVM的脚本语言(动态语言).在spring 2.x,脚本语言通过 Java scripting engine在S ...

  5. SEO优化之“不要轻易使用泛解析”

    原文地址:http://www.chinaz.com/web/2007/0505/8077.shtml 半夜三更的突然想起这个老想提出或者大家都知道的问题! 先续在这里,之后给予全面补充! 什么是泛解 ...

  6. RHEL-server-7.0-Linux-centos安装过程

    虚拟机centos7的安装过程 win10 ()vmware软件的时候,1.先关闭防火墙(杀毒软件),在安装vmware虚拟机.2.试着全装一下 vmware-14版本. 1. 打开VMware Wo ...

  7. Jmeter(十八)Logic Controllers 之 Random Controller and Random order Controller

    Random Controller就比较简单了,完全随机!毫无章法. 毫无任何规律的运行. 还有一个Random order Controller,随机顺序控制器就像一个简单的控制器,它将最多执行一次 ...

  8. Xmanager远程连接CentOS7

    上周例会,又被说了一通,Xmanager远程连接的文档没写?服务没搭建?心想这都有VNC了,为毛一定要弄这个啊?!!但是,我还是在今天给弄了,╮(╯▽╰)╭没人权.搭建完尝试用了下,感觉吧,也不咋地啊 ...

  9. Linux平台下源码安装mysql多实例数据库

    Linux平台下源码安装mysql多实例数据库[root@linux-node1 ~]# netstat -tlunp | grep 330tcp6 0 0 :::3306 :::* LISTEN 6 ...

  10. tensorFlow 三种启动图的用法

    tf.Session(),tf.InteractivesSession(),tf.train.Supervisor().managed_session()  用法的区别: tf.Session() 构 ...