一道我想骂人的题,差点把我气炸了。

题意:

求一个数的集合中(非多重集,每个数只出现一次)所有子集的gcd的和。结果MOD10^8+7输出。

输入输出不说了,自己看吧,不想写了。

当时我真把它当作数论题来写了,以为可以推导出什么公式然后化简大量重复的操作的。结果最后也没找到。最后题解说是dp,我同学说是暴力,吐血10升。

然后弄出来dp方程之后还是反复的wa,方程明明没啥问题,愣是卡了2个小时找不出错误,心情烦躁的要命,坑爹的室友还各种看视频打游戏,还不带耳机,我自己只好带着耳机大声放音乐,最后连音乐都听不下去了,恶心的想吐。

后来实在无奈了查了下题解,但是没人用dp写,有个用莫比乌斯反演的orz,还有个用暴力的,不过其实有dp的思想在里面。当然这不重要,重要的是我看见了他MOD加的位置挺有意思的,然后猛然想到我的int爆了!因为需要一个小于10^8的数×一个小于1000的数,这个数有可能爆!我叉!特么这不是故意卡int的意思吗?最后把这个改了终于过了……此时距离比赛结束已经5个小时了,我*!

状态转移方程:

dp[i][a[i]] += 1;

dp[i][j] += dp[i-1][j];

dp[i][gcd[j][a[i]]] += dp[i-1][j];

其中gcd[][]是预处理离线出来的,要不然可能会超时。

状态dp[i][j]表示在前n个数的集合中,gcd为j的集合有多少个。

方程表示三种情况:

  1. 只有a[i]的集合。
  2. 不存在a[i],只存在前i-1个数中若干数的集合。
  3. 存在a[i],且存在前i-1个数中若干数的集合。

时间复杂度为O(n*maxn),其中maxn为a[]数组中的最大值。

具体见代码——

 #include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
using namespace std;
#define LL long long const int N = ;
const int Mod = ; int a[N];
LL dp[N][N];
int gcd[N][N];
int t, n; int Gcd(int x, int y)
{
if(x < y)
{
int t = x;
x = y;
y = t;
}
while(y != )
{
int t = y;
y = x%y;
x = t;
}
return x;
} void Table()
{
for(int i = ; i < ; i++)
{
for(int j = ; j <= i; j++)
{
gcd[i][j] = gcd[j][i] = Gcd(i, j);
}
}
} int main()
{
//freopen("test.in", "r", stdin);
Table();
scanf("%d", &t);
for(int tm = ; tm <= t; tm++)
{
scanf("%d", &n);
int maxn = ;
for(int i = ; i < n; i++)
{
scanf("%d", &a[i]);
maxn = maxn > a[i] ? maxn : a[i];
}
memset(dp, , sizeof(dp));
dp[][a[]] = ;
for(int i = ; i < n; i++)
{
dp[i][a[i]] += ; //转移方程1
for(int j = ; j <= maxn; j++)
{
dp[i][j] += dp[i-][j]; //转移方程2
dp[i][gcd[j][a[i]]] += dp[i-][j]; //转移方程3
dp[i][j] %= Mod;
dp[i][gcd[j][a[i]]] %= Mod;
}
}
int ans = ;
for(int i = ; i <= maxn; i++)
{
ans += (dp[n-][i]*i)%Mod; //这里小心dp如果是int可能会爆
ans %= Mod;
} printf("%d\n", ans);
}
return ;
}

自己确实挺弱的,还需要努力,但是今天确实非常烦!所有认为这些没什么好烦的,都是因为他没有身临其境的感觉。

hdu CA Loves GCD(dp)的更多相关文章

  1. HDU 5656 CA Loves GCD dp

    CA Loves GCD 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5656 Description CA is a fine comrade w ...

  2. hdu-5656 CA Loves GCD(dp+数论)

    题目链接: CA Loves GCD Time Limit: 6000/3000 MS (Java/Others)     Memory Limit: 262144/262144 K (Java/Ot ...

  3. HDU 5656 CA Loves GCD (数论DP)

    CA Loves GCD 题目链接: http://acm.hust.edu.cn/vjudge/contest/123316#problem/B Description CA is a fine c ...

  4. HDU 5656 ——CA Loves GCD——————【dp】

    CA Loves GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)To ...

  5. hdu 5656 CA Loves GCD(n个任选k个的最大公约数和)

    CA Loves GCD  Accepts: 64  Submissions: 535  Time Limit: 6000/3000 MS (Java/Others)  Memory Limit: 2 ...

  6. HDU 5656 CA Loves GCD 01背包+gcd

    题目链接: hdu:http://acm.hdu.edu.cn/showproblem.php?pid=5656 bc:http://bestcoder.hdu.edu.cn/contests/con ...

  7. CA Loves GCD (BC#78 1002) (hdu 5656)

    CA Loves GCD  Accepts: 135  Submissions: 586  Time Limit: 6000/3000 MS (Java/Others)  Memory Limit: ...

  8. 数学(GCD,计数原理)HDU 5656 CA Loves GCD

    CA Loves GCD Accepts: 135 Submissions: 586 Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 2621 ...

  9. hdu 5656 CA Loves GCD

    CA Loves GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)To ...

随机推荐

  1. Java SSM框架之MyBatis3(四)MyBatis之一对一、一对多、多对多

    项目搭建Springboot 1.5  pom.xml <?xml version="1.0" encoding="UTF-8"?> <pro ...

  2. expect 交互 之shell执行命令操作

    shell 执行命令操作 /usr/bin/expect -c " proc jiaohu {} { send_user expect_start expect { password { s ...

  3. 分模块开发创建dao子模块——(七)

    1.选中父工程右键新建maven module

  4. mysql8.0 在window环境下的部署与配置

    今天在阿里云window服务器上配置mysql环境,踩了一些坑,分享出来.需要的朋友可以看看.额,或许有人要吐槽我为什么不在linux上去配置,额,因为我window的那台服务器配置相对高些.本人技术 ...

  5. nginx 日志切割(也适用于docker)

    =============================================== 2019/4/6_第2次修改                       ccb_warlock 201 ...

  6. [转]mysql性能优化-慢查询分析、优化索引和配置

    一. 优化概述 MySQL数据库是常见的两个瓶颈是CPU和I/O的瓶颈,CPU在饱和的时候一般发生在数据装入内存或从磁盘上读取数据时候.磁盘I/O瓶颈发生在装入数据远大于内存容量的时候,如果应用分布在 ...

  7. [转载]angular通过$http与服务器通信

    转载自:http://www.cooklife.cn/detail/54c5044ec93620284e964b58#View angular是一个前端框架,实现了可交互式的页面,但是对于一个web应 ...

  8. Laravel 生成二维码的方法

    (本实例laravel 版本 >=5.6, PHP版本 >=7.0) 1.首先,添加 QrCode 包添加到你的 composer.json 文件的 require 里: "re ...

  9. FreeMarker使用小记(HelloWorld)

    FreeMarker是开源的模板框架.对于它的介绍网上已经很多了.详情可参考主页:http://www.freemarker.org/ 现在我们就开始我们的FreeMarker版的Hello Worl ...

  10. 微信小程序Http高级封装 es6 promise

    公司突然要开放微信小程序,持续蒙蔽的我还不知道小程序是个什么玩意. 于是上网查了一下,就开始着手开发..... 首先开发客户端的东西,都有个共同点,那就是  数据请求! 看了下小程序的请求方式大概和a ...