题目链接

\(Description\)

  有一张\(n\)个点的完全图,从\(0\)到\(n-1\)标号,每两点\(i,j\)间的边权为\(i\oplus j\)。求其最小生成树边权之和。

\(Solution\)

  为方便,以下点从\(0\)到\(n\)编号。

  每个点\(x\)应和\(x\oplus lowbit(x)\)相连,边权为\(lowbit(x)\)(\(lowbit(x)\)会和\(0\)相连,所以一定能构成树),所以答案为\(\sum_{i=1}^nlb(i)\)。

  继续优化。注意到\(lb(i)\)一定是某个2次幂,所以令\(f(i)\)表示\(1\leq x\leq n\)且满足\(lb(x)=i\)的\(x\)的个数,则答案为\(\sum_{i=1}^nf(i)\times i\ (f(i)>0)=\sum_{i=0}^{\lfloor\log n\rfloor}f(2^i)\times 2^i\)

  \(f(i)\)显然可以用数位DP算,但是太麻烦了。。

  一些满足\(lb(i)=x\)的数,它们间隔至少是\(2x\)。比如\(x=(100)_2\),则\(i=100,1100,10100...\)(相差\(1000\))。所以\(f(x)=\lfloor\frac{n-x}{2x}\rfloor+1\ (1\leq x\leq n,x=2^y)\)。


  还有DP求\(\sum_{i=1}^nlb(i)\)的做法,好长啊...先不看了。


#include <cstdio>

int main()
{
long long n,res=0;
scanf("%I64d",&n); --n;
for(long long x=1; x<=n; x<<=1)
res+=x*((n-x)/(x<<1)+1);
printf("%I64d\n",res); return 0;
}

Codeforces.959E.Mahmoud and Ehab and the xor-MST(思路)的更多相关文章

  1. CodeForces 959E Mahmoud and Ehab and the xor-MST (MST+找规律)

    <题目链接> 题目大意: 给定一个数n,代表有一个0~n-1的完全图,该图中所有边的边权为两端点的异或值,求这个图的MST的值. 解题分析: 数据较大,$10^{12}$个点的完全图,然后 ...

  2. Codeforces 862C - Mahmoud and Ehab and the xor

    862C - Mahmoud and Ehab and the xor 思路:找两对异或后等于(1<<17-1)的数(相当于加起来等于1<<17-1),两个再异或一下就变成0了 ...

  3. CodeForces - 862C Mahmoud and Ehab and the xor(构造)【异或】

    <题目链接> 题目大意: 给出n.m,现在需要你输出任意n个不相同的数(n,m<1e5),使他们的异或结果为m,如果不存在n个不相同的数异或结果为m,则输出"NO" ...

  4. Codeforces 959E. Mahmoud and Ehab and the xor-MST 思路:找规律题,时间复杂度O(log(n))

    题目: 解题思路 这题就是0,1,2...n-1总共n个数字形成的最小生成树. 我们可以发现,一个数字k与比它小的数字形成的异或值,一定可以取到k与所有正整数形成的异或值的最小值. 要计算n个数字的情 ...

  5. CodeForces - 862C Mahmoud and Ehab and the xor(构造)

    题意:要求构造一个n个数的序列,要求n个数互不相同,且异或结果为x. 分析: 1.因为0 ^ 1 ^ 2 ^ 3 ^ ... ^ (n - 3) ^ (n - 2) ^ (0 ^ 1 ^ 2 ^ 3 ...

  6. Coderfroces 862 C. Mahmoud and Ehab and the xor

    C. Mahmoud and Ehab and the xor Mahmoud and Ehab are on the third stage of their adventures now. As ...

  7. Codeforces 959D. Mahmoud and Ehab and another array construction task(构造, 简单数论)

    Codeforces 959D. Mahmoud and Ehab and another array construction task 题意 构造一个任意两个数都互质的序列,使其字典序大等于a序列 ...

  8. Codeforces 959F Mahmoud and Ehab and yet another xor task 线性基 (看题解)

    Mahmoud and Ehab and yet another xor task 存在的元素的方案数都是一样的, 啊, 我好菜啊. 离线之后用线性基取check存不存在,然后计算答案. #inclu ...

  9. Codeforces 862A Mahmoud and Ehab and the MEX

    传送门:CF-862A A. Mahmoud and Ehab and the MEX time limit per test 2 seconds memory limit per test 256 ...

随机推荐

  1. js监听浏览器tab窗口切换

    js监听浏览器tab窗口切换 ——IT唐伯虎 摘要:js监听浏览器tab窗口切换. if (document.hidden !== undefined) {  document.addEventLis ...

  2. Git与GitHub学习笔记(三).gitignore文件忽略和删除本地以及远程文件

    一.Git提供了文件忽略功能.当对工作区某个目录或者某些文件设置了忽略后,git将不会对它们进行追踪 HELP:如何在IntelliJ IDEA中使用.ignore插件忽略不必要提交的文件 问题:最近 ...

  3. linux下编译make文件报错“/bin/bash^M: 坏的解释器,使用grep快速定位代码位置

    一.linux下编译make文件报错“/bin/bash^M: 坏的解释器 参考文章:http://blog.csdn.net/liuqiyao_01/article/details/41542101 ...

  4. NEGOUT: SUBSTITUTE FOR MAXOUT UNITS

    NEGOUT: SUBSTITUTE FOR MAXOUT UNITS Maxout [1] units are well-known and frequently used tools for De ...

  5. 从数据库存储,文件结构谈到B树,散列

    昨天俱乐部内部办了一个讲座,关于常规数据库系统实现,听了之后有点混乱,于是花了很多时间特地查了一些资料,基本上自己感觉自己是明白了.特地写下来. 文章开头说明三点, 第一点,本文针对常规数据库,是为了 ...

  6. LCA 算法(一)ST表

    介绍一种解决最近公共祖先的在线算法,st表,它是建立在线性中的rmq问题之上.   代码:   //LCA: DFS+ST(RMQ) #include<cstdio> #include&l ...

  7. Oracle错误及解决方案

    1.ORA-00257:归档程序错误.在释放之前仅限于内部链接 问题原因:归档日志占满了空间 解决方法: .增加归档日志空间 alter system set db_recovery_file_des ...

  8. Linux内核源码分析--内核启动之(6)Image内核启动(do_basic_setup函数)(Linux-3.0 ARMv7)【转】

    原文地址:Linux内核源码分析--内核启动之(6)Image内核启动(do_basic_setup函数)(Linux-3.0 ARMv7) 作者:tekkamanninja 转自:http://bl ...

  9. git 入门常用命令(转)

    Git工作流程:D:\projects\Setup2\Setup2\Setup2\Express\SingleImage\DiskImages\DISK1 git clone工作开始之初,可通过git ...

  10. [Android]使用 Eclipse 给 APK 签名时遇到的两个问题及解决办法

    问题 今天用 APK 反编译工具看了一下自己项目生成的 APK 文件,发现代码并没有混淆,于是设置了用 ProGuard 混淆代码,可是混淆是必须在非 Debug 模式才会生效的,即使你是以 Rele ...