https://gitorious.org/freebsd/freebsd/raw/56c5165837bf08f50ca4a08c6b2da91f73852960:sys/arm/include/acle-compat.h

/*
* Copyright (c) 2014 ARM Ltd
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the company may not be used to endorse or promote
* products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD$
*/ #ifndef __ARM_ARCH /* ACLE standardises a set of pre-defines that describe the ARM architecture.
These were mostly implemented in GCC around GCC-4.8; older versions
have no, or only partial support. To provide a level of backwards
compatibility we try to work out what the definitions should be, given
the older pre-defines that GCC did produce. This isn't complete, but
it should be enough for use by routines that depend on this header. */ /* No need to handle ARMv8, GCC had ACLE support before that. */ #define __ARM_ACLE 101 # ifdef __ARM_ARCH_7__
/* The common subset of ARMv7 in all profiles. */
# define __ARM_ARCH
# define __ARM_ARCH_ISA_THUMB
# define __ARM_FEATURE_CLZ
# define __ARM_FEATURE_LDREX
# define __ARM_FEATURE_UNALIGNED
# endif # if defined (__ARM_ARCH_7A__) || defined (__ARM_ARCH_7R__)
# define __ARM_ARCH
# define __ARM_ARCH_ISA_THUMB
# define __ARM_ARCH_ISA_ARM
# define __ARM_FEATURE_CLZ
# define __ARM_FEATURE_SIMD32
# define __ARM_FEATURE_DSP
# define __ARM_FEATURE_QBIT
# define __ARM_FEATURE_SAT
# define __ARM_FEATURE_LDREX
# define __ARM_FEATURE_UNALIGNED
# ifdef __ARM_ARCH_7A__
# define __ARM_ARCH_PROFILE 'A'
# else
# define __ARM_ARCH_PROFILE 'R'
# endif
# endif # ifdef __ARM_ARCH_7EM__
# define __ARM_ARCH
# define __ARM_ARCH_ISA_THUMB
# define __ARM_FEATURE_CLZ
# define __ARM_FEATURE_SIMD32
# define __ARM_FEATURE_DSP
# define __ARM_FEATURE_QBIT
# define __ARM_FEATURE_SAT
# define __ARM_FEATURE_LDREX
# define __ARM_FEATURE_UNALIGNED
# define __ARM_ARCH_PROFILE 'M'
# endif # ifdef __ARM_ARCH_7M__
# define __ARM_ARCH
# define __ARM_ARCH_ISA_THUMB
# define __ARM_FEATURE_CLZ
# define __ARM_FEATURE_QBIT
# define __ARM_FEATURE_SAT
# define __ARM_FEATURE_LDREX
# define __ARM_FEATURE_UNALIGNED
# define __ARM_ARCH_PROFILE 'M'
# endif # ifdef __ARM_ARCH_6T2__
# define __ARM_ARCH
# define __ARM_ARCH_ISA_THUMB
# define __ARM_ARCH_ISA_ARM
# define __ARM_FEATURE_CLZ
# define __ARM_FEATURE_SIMD32
# define __ARM_FEATURE_DSP
# define __ARM_FEATURE_QBIT
# define __ARM_FEATURE_SAT
# define __ARM_FEATURE_LDREX
# define __ARM_FEATURE_UNALIGNED
# endif # ifdef __ARM_ARCH_6M__
# define __ARM_ARCH
# define __ARM_ARCH_ISA_THUMB
# define __ARM_ARCH_PROFILE 'M'
# endif # if defined (__ARM_ARCH_6__) || defined (__ARM_ARCH_6J__) \
|| defined (__ARM_ARCH_6K__) || defined (__ARM_ARCH_6Z__) \
|| defined (__ARM_ARCH_6ZK__)
# define __ARM_ARCH
# define __ARM_ARCH_ISA_THUMB
# define __ARM_ARCH_ISA_ARM
# define __ARM_FEATURE_CLZ
# define __ARM_FEATURE_SIMD32
# define __ARM_FEATURE_DSP
# define __ARM_FEATURE_QBIT
# define __ARM_FEATURE_SAT
# define __ARM_FEATURE_UNALIGNED
# ifndef __thumb__
# if defined (__ARM_ARCH_6K__) || defined (__ARM_ARCH_6ZK__)
# define __ARM_FEATURE_LDREX
# else
# define __ARM_FEATURE_LDREX
# endif
# endif
# endif # if defined (__ARM_ARCH_5TE__) || defined (__ARM_ARCH_5E__)
# define __ARM_ARCH
# define __ARM_ARCH_ISA_ARM
# ifdef __ARM_ARCH_5TE__
# define __ARM_ARCH_ISA_THUMB
# endif
# define __ARM_FEATURE_CLZ
# define __ARM_FEATURE_DSP
# endif # if defined (__ARM_ARCH_5T__) || defined (__ARM_ARCH_5__)
# define __ARM_ARCH
# define __ARM_ARCH_ISA_ARM
# ifdef __ARM_ARCH_5TE__
# define __ARM_ARCH_ISA_THUMB
# endif
# define __ARM_FEATURE_CLZ
# endif # ifdef __ARM_ARCH_4T__
# define __ARM_ARCH
# define __ARM_ARCH_ISA_ARM
# define __ARM_ARCH_ISA_THUMB
# endif # ifdef __ARM_ARCH_4__
# define __ARM_ARCH
# define __ARM_ARCH_ISA_ARM
# endif # if defined (__ARM_ARCH_3__) || defined (__ARM_ARCH_3M__)
# define __ARM_ARCH
# define __ARM_ARCH_ISA_ARM
# endif # ifdef __ARM_ARCH_2__
# define __ARM_ARCH
# define __ARM_ARCH_ISA_ARM
# endif # ifdef __ARMEB__
# define __ARM_BIG_ENDIAN
# endif /* If we still don't know what the target architecture is, then we're
probably not using GCC. */
# ifndef __ARM_ARCH
# error Unable to determine architecture version.
# endif #endif /* __ARM_ARCH */

http://en.wikipedia.org/wiki/ARM_architecture

Architecture Bit
width
Cores designed by ARM Holdings Cores designed by third parties Cortex profile References
ARMv1 32/26 ARM1      
ARMv2 32/26 ARM2ARM3 Amber, STORM Open Soft Core[28]    
ARMv3 32 ARM6ARM7      
ARMv4 32 ARM8 StrongARM, FA526    
ARMv4T 32 ARM7TDMIARM9TDMI      
ARMv5 32 ARM7EJARM9EARM10E XScale, FA626TE, Feroceon, PJ1/Mohawk    
ARMv6 32 ARM11      
ARMv6-M 32 ARM Cortex-M0ARM Cortex-M0+ARM Cortex-M1   Microcontroller  
ARMv7-M 32 ARM Cortex-M3   Microcontroller  
ARMv7E-M 32 ARM Cortex-M4   Microcontroller  
ARMv7-R 32 ARM Cortex-R4ARM Cortex-R5ARM Cortex-R7   Real-time  
ARMv7-A 32 ARM Cortex-A5ARM Cortex-A7ARM Cortex-A8ARM Cortex-A9ARM Cortex-A12ARM Cortex-A15ARM Cortex-A17 KraitScorpion, PJ4/Sheeva, Apple A6/A6X (Swift) Application  
ARMv8-A 64/32 ARM Cortex-A53ARM Cortex-A57[29] X-GeneDenverApple A7 (Cyclone), AMD K12 Application [30][31]
ARMv8-R 32 No announcements yet   Real-time [32][33]

A list of vendors who implement ARM cores in their design (application specific standard products (ASSP), microprocessor and microcontrollers) is provided by ARM Holdings.[34]

Designed by ARM[edit]

ARM family ARM architecture ARM core Feature Cache (I / D),MMU Typical MIPS @MHz
ARM1 ARMv1 ARM1 First implementation None  
ARM2 ARMv2 ARM2 ARMv2 added the MUL (multiply) instruction None 4 MIPS @ 8 MHz
0.33 DMIPS/MHz
ARMv2a ARM250 Integrated MEMC (MMU), graphics and I/O processor. ARMv2a added the SWP and SWPB (swap) instructions None, MEMC1a 7 MIPS @ 12 MHz
ARM3 ARMv2a ARM3 First integrated memory cache KB unified 12 MIPS @ 25 MHz
0.50 DMIPS/MHz
ARM6 ARMv3 ARM60 ARMv3 first to support 32-bit memory address space (previously 26-bit) None 10 MIPS @ 12 MHz
ARM600 As ARM60, cache and coprocessor bus (for FPA10 floating-point unit) 4 KB unified 28 MIPS @ 33 MHz
ARM610 As ARM60, cache, no coprocessor bus 4 KB unified 17 MIPS @ 20 MHz
0.65 DMIPS/MHz
ARM7 ARMv3 ARM700   8 KB unified 40 MHz
ARM710 As ARM700, no coprocessor bus 8 KB unified 40 MHz
ARM710a As ARM710 8 KB unified 40 MHz
0.68 DMIPS/MHz
ARM7TDMI ARMv4T ARM7TDMI(-S) 3-stage pipeline, Thumb, ARMv4 first to drop legacy ARM26-bit addressing None 15 MIPS @ 16.8 MHz
63 DMIPS @ 70 MHz
ARM710T As ARM7TDMI, cache 8 KB unified, MMU 36 MIPS @ 40 MHz
ARM720T As ARM7TDMI, cache 8 KB unified, MMU with FCSE (Fast Context Switch Extension) 60 MIPS @ 59.8 MHz
ARM740T As ARM7TDMI, cache MPU  
ARM7EJ ARMv5TEJ ARM7EJ-S 5-stage pipeline, Thumb, Jazelle DBX, Enhanced DSP instructions None  
ARM8 ARMv4 ARM810[4][5] 5-stage pipeline, static branch prediction, double-bandwidth memory 8 KB unified, MMU 84 MIPS @ 72 MHz
1.16 DMIPS/MHz
ARM9TDMI ARMv4T ARM9TDMI 5-stage pipeline, Thumb None  
ARM920T As ARM9TDMI, cache 16 KB / 16 KB, MMU with FCSE (Fast Context Switch Extension)[6] 200 MIPS @ 180 MHz
ARM922T As ARM9TDMI, caches 8 KB / 8 KB, MMU  
ARM940T As ARM9TDMI, caches 4 KB / 4 KB, MPU  
ARM9E ARMv5TE ARM946E-S Thumb, Enhanced DSP instructions, caches Variable, tightly coupled memories, MPU  
ARM966E-S Thumb, Enhanced DSP instructions No cache, TCMs  
ARM968E-S As ARM966E-S No cache, TCMs  
ARMv5TEJ ARM926EJ-S Thumb, Jazelle DBX, Enhanced DSP instructions Variable, TCMs, MMU 220 MIPS @ 200 MHz
ARMv5TE ARM996HS Clockless processor, as ARM966E-S No caches, TCMs, MPU  
ARM10E ARMv5TE ARM1020E 6-stage pipeline, Thumb, Enhanced DSP instructions, (VFP) 32 KB / 32 KB, MMU  
ARM1022E As ARM1020E 16 KB / 16 KB, MMU  
ARMv5TEJ ARM1026EJ-S Thumb, Jazelle DBX, Enhanced DSP instructions, (VFP) Variable, MMU or MPU  
ARM11 ARMv6 ARM1136J(F)-S[7] 8-stage pipeline, SIMD, Thumb, Jazelle DBX, (VFP), Enhanced DSP instructions Variable, MMU 740 @ 532–665 MHz (i.MX31 SoC), 400–528 MHz
ARMv6T2 ARM1156T2(F)-S 8-stage pipeline, SIMD, Thumb-2, (VFP), Enhanced DSP instructions Variable, MPU  
ARMv6Z ARM1176JZ(F)-S As ARM1136EJ(F)-S Variable, MMU + TrustZone 965 DMIPS @ 772 MHz, up to 2,600 DMIPS with four processors[8]
ARMv6K ARM11 MPCore As ARM1136EJ(F)-S, 1–4 core SMP Variable, MMU  
SecurCore ARMv6-M SC000     0.9 DMIPS/MHz
ARMv4T SC100      
ARMv7-M SC300     1.25 DMIPS/MHz
Cortex-M ARMv6-M Cortex-M0[9] Microcontroller profile, Thumb + Thumb-2 subset (BL, MRS, MSR, ISB, DSB, DMB),[10] hardware multiply instruction (optional small), optional system timer, optional bit-banding memory Optional cache, no TCM, no MPU 0.84 DMIPS/MHz
Cortex-M0+[11] Microcontroller profile, Thumb + Thumb-2 subset (BL, MRS, MSR, ISB, DSB, DMB),[10] hardware multiply instruction (optional small), optional system timer, optional bit-banding memory Optional cache, no TCM, optional MPU with 8 regions 0.93 DMIPS/MHz
Cortex-M1[12] Microcontroller profile, Thumb + Thumb-2 subset (BL, MRS, MSR, ISB, DSB, DMB),[10] hardware multiply instruction (optional small), OS option adds SVC / banked stack pointer, optional system timer, no bit-banding memory Optional cache, 0-1024 KB I-TCM, 0-1024 KB D-TCM, no MPU 136 DMIPS @ 170 MHz,[13](0.8 DMIPS/MHz FPGA-dependent)[14]
ARMv7-M Cortex-M3[15] Microcontroller profile, Thumb / Thumb-2, hardware multiply and divide instructions, optional bit-banding memory Optional cache, no TCM, optional MPU with 8 regions 1.25 DMIPS/MHz
ARMv7E-M Cortex-M4[16] Microcontroller profile, Thumb / Thumb-2 / DSP / optional FPv4 single-precision FPU, hardware multiply and divide instructions, optional bit-banding memory Optional cache, no TCM, optional MPU with 8 regions 1.25 DMIPS/MHz
Cortex-R ARMv7-R Cortex-R4[17] Real-time profile, Thumb / Thumb-2 / DSP / optional VFPv3 FPU, hardware multiply and optional divide instructions, optional parity & ECC for internal buses / cache / TCM, 8-stage pipeline dual-core running lockstepwith fault logic 0–64 KB / 0–64 KB, 0–2 of 0–8 MB TCM, opt MPU with 8/12 regions  
Cortex-R5 (MPCore)[18] Real-time profile, Thumb / Thumb-2 / DSP / optional VFPv3 FPU and precision, hardware multiply and optional divide instructions, optional parity & ECC for internal buses / cache / TCM, 8-stage pipeline dual-core running lock-step with fault logic / optional as 2 independent cores, low-latency peripheral port (LLPP), accelerator coherency port (ACP)[19] 0–64 KB / 0–64 KB, 0–2 of 0–8 MB TCM, opt MPU with 12/16 regions  
Cortex-R7 (MPCore)[20] Real-time profile, Thumb / Thumb-2 / DSP / optional VFPv3 FPU and precision, hardware multiply and optional divide instructions, optional parity & ECC for internal buses / cache / TCM, 11-stage pipeline dual-core running lock-step with fault logic / out-of-order execution / dynamic register renaming / optional as 2 independent cores, low-latency peripheral port (LLPP), ACP[19] 0–64 KB / 0–64 KB, ? of 0–128 KB TCM, opt MPU with 16 regions  
Cortex-A ARMv7-A Cortex-A5[21] Application profile, ARM / Thumb / Thumb-2 / DSP / SIMD / Optional VFPv4-D16 FPU / Optional NEON / Jazelle RCT and DBX, 1–4 cores / optional MPCore, snoop control unit (SCU), generic interrupt controller (GIC), accelerator coherence port (ACP) 4-64 KB / 4-64 KB L1, MMU + TrustZone 1.57 DMIPS/MHz per core
Cortex-A7 MPCore[22] Application profile, ARM / Thumb / Thumb-2 / DSP / VFPv4-D16 FPU / NEON / Jazelle RCT and DBX / Hardware virtualization, in-order execution, superscalar, 1–4 SMP cores, Large Physical Address Extensions (LPAE), snoop control unit (SCU), generic interrupt controller (GIC), ACP, architecture and feature set are identical to A15, 8-10 stage pipeline, low-power design[23] 32 KB / 32 KB L1, 0–4 MB L2, MMU + TrustZone 1.9 DMIPS/MHz per core
Cortex-A8[24] Application profile, ARM / Thumb / Thumb-2 / VFPv3 FPU / NEON / Jazelle RCT and DAC, 13-stage superscalarpipeline 16-32 KB / 16–32 KB L1, 0–1 MB L2 opt ECC, MMU + TrustZone Up to 2000 (2.0 DMIPS/MHz in speed from 600 MHz to greater than 1 GHz)
Cortex-A9 MPCore[25] Application profile, ARM / Thumb / Thumb-2 / DSP / Optional VFPv3 FPU / Optional NEON / Jazelle RCT and DBX, out-of-order speculative issue superscalar, 1–4 SMP cores, snoop control unit (SCU), generic interrupt controller (GIC), accelerator coherence port (ACP) 16–64 KB / 16–64 KB L1, 0–8 MB L2 opt parity, MMU + TrustZone 2.5 DMIPS/MHz per core, 10,000 DMIPS @ 2 GHz on Performance Optimized TSMC40G (dual-core)
Cortex-A12[26] Application profile, ARM / Thumb-2 / DSP / VFPv4 FPU / NEON / Hardware virtualization, out-of-order speculative issue superscalar, 1–4 SMP cores, Large Physical Address Extensions (LPAE), snoop control unit (SCU), generic interrupt controller (GIC), accelerator coherence port (ACP) 32-64 KB / 32 KB L1, 256 KB-8 MB L2 3.0 DMIPS/MHz per core
Cortex-A15 MPCore[27] Application profile, ARM / Thumb / Thumb-2 / DSP / VFPv4 FPU / NEON / Integer divide / Fused MAC / Jazelle RCT / Hardware virtualization, out-of-order speculative issue superscalar, 1–4 SMP cores, Large Physical Address Extensions (LPAE), snoop control unit (SCU), generic interrupt controller (GIC), ACP, 15-24 stage pipeline[23] 32 KB w/parity / 32 KB w/ECCL1, 0–4 MB L2, L2 has ECC, MMU + TrustZone At least 3.5 DMIPS/MHz per core (up to 4.01 DMIPS/MHz depending on implementation)[28]
Cortex-A17 MPCore Application profile, ARM / Thumb / Thumb-2 / DSP / VFPv4 FPU / NEON / Integer divide / Fused MAC / Jazelle RCT / Hardware virtualization, out-of-order speculative issue superscalar, 1–4 SMP cores, Large Physical Address Extensions (LPAE), snoop control unit (SCU), generic interrupt controller (GIC), ACP MMU + TrustZone  
Cortex-A50 ARMv8-A Cortex-A53[29] Application profile, AArch32 and AArch64, 1-4 SMP cores, Trustzone, NEON advanced SIMD, VFPv4, hardware virtualization, dual issue, in-order pipeline 8-64 KB w/parity / 8-64 KB w/ECC L1 per core, 128 KB-2 MB L2 shared, 40-bit physical addresses 2.3 DMIPS/MHz
Cortex-A57[30] Application profile, AArch32 and AArch64, 1-4 SMP cores, Trustzone, NEON advanced SIMD, VFPv4, hardware virtualization, multi-issue, deeply out-of-order pipeline 48 KB w/DED parity / 32 KB w/ECC L1 per core, 512 KB-2 MB L2 shared, 44-bit physical addresses At least 4.1 DMIPS/MHz per core (up to 4.76 DMIPS/MHz depending on implementation)
ARM family ARM architecture ARM core Feature Cache (I / D),MMU Typical MIPS @ MHz

Designed by third parties[edit]

These cores implement the ARM instruction set, and were developed independently by companies with an architectural license from ARM.

Family Instruction set Microarchitecture Feature Cache (I / D), MMU Typical MIPS @ MHz
StrongARM ARMv4 SA-110 5-stage pipeline 16 KB / 16 KB, MMU 100–206 MHz
1.0 DMIPS/MHz
SA-1100 derivative of the SA-110 16 KB / 8 KB, MMU  
Faraday[31] ARMv4 FA510 6-stage pipeline Up to 32 KB / 32 KB cache, MPU 1.26 DMIPS/MHz
100–200 MHz
FA526 Up to 32 KB / 32 KB cache, MMU 1.26 MIPS/MHz
166-300 MHz
FA626 8-stage pipeline 32 KB / 32 KB cache, MMU 1.35 DMIPS/MHz
500 MHz
ARMv5TE FA606TE 5-stage pipeline No cache, no MMU 1.22 DMIPS/MHz
200 MHz
FA626TE 8-stage pipeline 32 KB / 32 KB cache, MMU 1.43 MIPS/MHz
800 MHz
FMP626TE 8-stage pipeline, SMP 1.43 MIPS/MHz
500 MHz
FA726TE 13 stage pipeline, dual issue 2.4 DMIPS/MHz
1000 MHz
XScale ARMv5TE XScale 7-stage pipeline, Thumb, Enhanced DSP instructions 32 KB / 32 KB, MMU 133–400 MHz
Bulverde Wireless MMX, Wireless SpeedStep added 32 KB / 32 KB, MMU 312–624 MHz
Monahans[32] Wireless MMX2 added 32 KB / 32 KB (L1), optional L2 cache up to 512 KB, MMU Up to 1.25 GHz
MarvellSheeva ARMv5 Feroceon 5-8 stage pipeline, single-issue 16 KB / 16 KB, MMU 600–2000 MHz
Jolteon 5-8 stage pipeline, dual-issue 32 KB / 32 KB, MMU
PJ1 (Mohawk) 5-8 stage pipeline, single-issue, Wireless MMX2 32 KB / 32 KB, MMU 1.46 DMIPS/MHz
1.06 GHz
ARMv6 / ARMv7-A PJ4 6-9 stage pipeline, dual-issue, Wireless MMX2, SMP 32 KB / 32 KB, MMU 2.41 DMIPS/MHz
1.6 GHz
Snapdragon ARMv7-A Scorpion[33] 1 or 2 cores. ARM / Thumb / Thumb-2 / DSP / SIMD / VFPv3 FPU / NEON (128-bit wide) 256 KB L2 per core 2.1 DMIPS/MHz per core
Krait[33] 1, 2, or 4 cores. ARM / Thumb / Thumb-2 / DSP / SIMD / VFPv4 FPU / NEON (128-bit wide) 4 KB / 4 KB L0, 16 KB / 16 KB L1, 512 KB L2 per core 3.3 DMIPS/MHz per core
Apple A6,
Apple A6X
ARMv7-A Swift[34] 2 cores. ARM / Thumb / Thumb-2 / DSP / SIMD / VFPv4 FPU / NEON L1: 32 KB / 32 KB, L2: 1 MB 3.5 DMIPS/MHz per core
Apple A7 ARMv8-A Cyclone 2 cores. ARM / Thumb / Thumb-2 / DSP / SIMD / VFPv4 FPU / NEON / TrustZone /AArch64 L1: 64 KB / 64 KB, L2: 1 MB 1.3 GHz
Apple A8 ARMv8-A Cyclone gen 2 2 cores. ARM / Thumb / Thumb-2 / DSP / SIMD / VFPv4 FPU / NEON / TrustZone /AArch64 L1: (unknown);KB, L2: (unknown);MB 1.4 GHz
X-Gene ARMv8-A X-Gene 64-bit, quad issue, SMP, 64 cores[35] Cache, MMU, virtualization 3 GHz
Denver ARMv8-A Denver 64-bit 128 KB I / 64 KB D Up to 2.5 GHz
ThunderX ARMv8-A ThunderX 8-16 / 24-48 cores (×2 w/two chips). 64-bit   Up to 2.5 GHz

ARM core timeline[edit]

The following table lists each core by the year it was announced.[36][37]

Year Classic cores Cortex cores
ARM7 ARM8 ARM 9 ARM10 ARM11 Embedded Real-time Application
1996   ARM810        
1997     ARM9TDMI    
1998 ARM7TDMI(-S)        
1999          
2000          
2001          
2002         ARM1136J(F)-S
2003     ARM966E-S
ARM968E-S
  ARM1156T2(F)-S
ARM1176JZ(F)-S
2004           Cortex-M3    
2005               Cortex-A8
2006     ARM996HS          
2007           Cortex-M1   Cortex-A9
2008                
2009           Cortex-M0   Cortex-A5
2010           Cortex-M4   Cortex-A15
2011             Cortex-R4
Cortex-R5
Cortex-R7
Cortex-A7
2012           Cortex-M0+   Cortex-A53
Cortex-A57
2013               Cortex-A12
2014               Cortex-A17

ARM architectures的更多相关文章

  1. ARM Compiler toolchain Compiler -- Supported ARM architectures

    --cpu=name This option enables code generation for the selected ARM processor or architecture. Synta ...

  2. ARM architecture

    http://en.wikipedia.org/wiki/ARM_architecture ARM architecture     ARM architectures The ARM logo De ...

  3. {ICIP2014}{收录论文列表}

    This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinc ...

  4. jni使用

    版权声明:本文为博主原创文章,未经博主允许不得转载.   目录(?)[-] 简介 详解 JNI 元素 JNI函数实战 AndroidmkApplicationmk Androidmk Applicat ...

  5. virt-install详解

    man virt-install VIRT-INSTALL() Virtual Machine Manager VIRT-INSTALL() NAME virt-install - provision ...

  6. How to Create a Framework for iOS[RE]

    In the previous tutorial, you learned how to create a reusable knob control. However, it might not b ...

  7. JNI 解析

    JNI是什么? JNI(Java Native Interface)意为JAVA本地调用,它允许Java代码和其他语言写的代码进行交互,简单的说,一种在Java虚拟机控制下执行代码的标准机制. NDK ...

  8. JNI 实战全面解析

    项目决定移植一款C++开源项目到Android平台,开始对JNI深入研究. JNI是什么? JNI(JavaNative Interface)意为Java本地调用,它允许Java代码和其他语言写的代码 ...

  9. 谢宝友: 手把手教你给Linux内核发patch

    本文系转载,著作权归作者所有. 商业转载请联系作者获得授权,非商业转载请注明出处. 作者: 谢宝友 来源: 微信公众号 linux阅码场 (id: linuxdev) 本文简介       本文一步一 ...

随机推荐

  1. PHP截取中文字符串

    这里的输出的长度是6,那么一个汉字的字符长度就是3咯,可是老师演示的一个字符的长度却是2,百思不得其解. 查了一下资料发现,这个问题的答案与系统所采用的字符编码方式有关: 1. utf-8 如果系统采 ...

  2. js四舍五入

    7-13 向上取整ceil() 7-14 向下取整floor() 7-15 四舍五入round() 7-16 随机数 random()

  3. hdu 3572 Task Schedule(最大流)2010 ACM-ICPC Multi-University Training Contest(13)——Host by UESTC

    题意: 告诉我们有m个任务和k个机器.第i个任务需要ci天完成,最早从第ai天开始,最晚在第bi天结束.每台机器每天可以执行一个任务.问,是否可以将所有的任务都按时完成? 输入: 首行输入一个整数t, ...

  4. [Java]获取图片高和宽

    通过javax.imageio.ImageIO类中的read()函数读取的图片,存放在类java.awt.image.BufferedImage类中.调用BufferedImage类中的getWidt ...

  5. Delphi中实现MDI子窗体(转)

        Delphi中实现MDI子窗体 用MDI实现浏览子窗口,具有窗口管理功能,同屏观看多个网页的内容  ① 多文档窗体(MDI) MDI窗体是一种具有主子结构的窗体体系,微软的Word便是其中的一 ...

  6. leetcode:Palindrome Number

    Question: Determine whether an integer is a palindrome. Do this without extra space. Some hints: Cou ...

  7. 以Akka为示例,介绍Actor模型

    许多开发者在创建和维护多线程应用程序时经历过各种各样的问题,他们希望能在一个更高层次的抽象上进行工作,以避免直接和线程与锁打交道.为了帮助这些开发者,Arun Manivannan编写了一系列的博客帖 ...

  8. 演义江湖PC端意见汇总

    写在前面: 1.自己的游戏自己玩玩爽不爽,自己爽了才能说玩家可能会接受,自己都玩不下去玩家凭什么玩你的游戏 2.如果你负责美术,那么你到游戏中看看,你如果不能接受,玩家也会觉得游戏很丑 3.如果你负责 ...

  9. JIT(动态编译)和AOT(静态编译)编译技术比较

    Java 应用程序的性能经常成为开发社区中的讨论热点.因为该语言的设计初衷是使用解释的方式支持应用程序的可移植性目标,早期 Java 运行时所提供的性能级别远低于 C 和 C++ 之类的编译语言.尽管 ...

  10. China特色创新现状

    1,unity桌面 2,http://www.cs2c.com.cn/ 3,http://os.51cto.com/art/200602/20350.htm 4,http://zhidao.baidu ...