ARM architectures
/*
* Copyright (c) 2014 ARM Ltd
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the company may not be used to endorse or promote
* products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD$
*/ #ifndef __ARM_ARCH /* ACLE standardises a set of pre-defines that describe the ARM architecture.
These were mostly implemented in GCC around GCC-4.8; older versions
have no, or only partial support. To provide a level of backwards
compatibility we try to work out what the definitions should be, given
the older pre-defines that GCC did produce. This isn't complete, but
it should be enough for use by routines that depend on this header. */ /* No need to handle ARMv8, GCC had ACLE support before that. */ #define __ARM_ACLE 101 # ifdef __ARM_ARCH_7__
/* The common subset of ARMv7 in all profiles. */
# define __ARM_ARCH
# define __ARM_ARCH_ISA_THUMB
# define __ARM_FEATURE_CLZ
# define __ARM_FEATURE_LDREX
# define __ARM_FEATURE_UNALIGNED
# endif # if defined (__ARM_ARCH_7A__) || defined (__ARM_ARCH_7R__)
# define __ARM_ARCH
# define __ARM_ARCH_ISA_THUMB
# define __ARM_ARCH_ISA_ARM
# define __ARM_FEATURE_CLZ
# define __ARM_FEATURE_SIMD32
# define __ARM_FEATURE_DSP
# define __ARM_FEATURE_QBIT
# define __ARM_FEATURE_SAT
# define __ARM_FEATURE_LDREX
# define __ARM_FEATURE_UNALIGNED
# ifdef __ARM_ARCH_7A__
# define __ARM_ARCH_PROFILE 'A'
# else
# define __ARM_ARCH_PROFILE 'R'
# endif
# endif # ifdef __ARM_ARCH_7EM__
# define __ARM_ARCH
# define __ARM_ARCH_ISA_THUMB
# define __ARM_FEATURE_CLZ
# define __ARM_FEATURE_SIMD32
# define __ARM_FEATURE_DSP
# define __ARM_FEATURE_QBIT
# define __ARM_FEATURE_SAT
# define __ARM_FEATURE_LDREX
# define __ARM_FEATURE_UNALIGNED
# define __ARM_ARCH_PROFILE 'M'
# endif # ifdef __ARM_ARCH_7M__
# define __ARM_ARCH
# define __ARM_ARCH_ISA_THUMB
# define __ARM_FEATURE_CLZ
# define __ARM_FEATURE_QBIT
# define __ARM_FEATURE_SAT
# define __ARM_FEATURE_LDREX
# define __ARM_FEATURE_UNALIGNED
# define __ARM_ARCH_PROFILE 'M'
# endif # ifdef __ARM_ARCH_6T2__
# define __ARM_ARCH
# define __ARM_ARCH_ISA_THUMB
# define __ARM_ARCH_ISA_ARM
# define __ARM_FEATURE_CLZ
# define __ARM_FEATURE_SIMD32
# define __ARM_FEATURE_DSP
# define __ARM_FEATURE_QBIT
# define __ARM_FEATURE_SAT
# define __ARM_FEATURE_LDREX
# define __ARM_FEATURE_UNALIGNED
# endif # ifdef __ARM_ARCH_6M__
# define __ARM_ARCH
# define __ARM_ARCH_ISA_THUMB
# define __ARM_ARCH_PROFILE 'M'
# endif # if defined (__ARM_ARCH_6__) || defined (__ARM_ARCH_6J__) \
|| defined (__ARM_ARCH_6K__) || defined (__ARM_ARCH_6Z__) \
|| defined (__ARM_ARCH_6ZK__)
# define __ARM_ARCH
# define __ARM_ARCH_ISA_THUMB
# define __ARM_ARCH_ISA_ARM
# define __ARM_FEATURE_CLZ
# define __ARM_FEATURE_SIMD32
# define __ARM_FEATURE_DSP
# define __ARM_FEATURE_QBIT
# define __ARM_FEATURE_SAT
# define __ARM_FEATURE_UNALIGNED
# ifndef __thumb__
# if defined (__ARM_ARCH_6K__) || defined (__ARM_ARCH_6ZK__)
# define __ARM_FEATURE_LDREX
# else
# define __ARM_FEATURE_LDREX
# endif
# endif
# endif # if defined (__ARM_ARCH_5TE__) || defined (__ARM_ARCH_5E__)
# define __ARM_ARCH
# define __ARM_ARCH_ISA_ARM
# ifdef __ARM_ARCH_5TE__
# define __ARM_ARCH_ISA_THUMB
# endif
# define __ARM_FEATURE_CLZ
# define __ARM_FEATURE_DSP
# endif # if defined (__ARM_ARCH_5T__) || defined (__ARM_ARCH_5__)
# define __ARM_ARCH
# define __ARM_ARCH_ISA_ARM
# ifdef __ARM_ARCH_5TE__
# define __ARM_ARCH_ISA_THUMB
# endif
# define __ARM_FEATURE_CLZ
# endif # ifdef __ARM_ARCH_4T__
# define __ARM_ARCH
# define __ARM_ARCH_ISA_ARM
# define __ARM_ARCH_ISA_THUMB
# endif # ifdef __ARM_ARCH_4__
# define __ARM_ARCH
# define __ARM_ARCH_ISA_ARM
# endif # if defined (__ARM_ARCH_3__) || defined (__ARM_ARCH_3M__)
# define __ARM_ARCH
# define __ARM_ARCH_ISA_ARM
# endif # ifdef __ARM_ARCH_2__
# define __ARM_ARCH
# define __ARM_ARCH_ISA_ARM
# endif # ifdef __ARMEB__
# define __ARM_BIG_ENDIAN
# endif /* If we still don't know what the target architecture is, then we're
probably not using GCC. */
# ifndef __ARM_ARCH
# error Unable to determine architecture version.
# endif #endif /* __ARM_ARCH */
http://en.wikipedia.org/wiki/ARM_architecture
Architecture | Bit width |
Cores designed by ARM Holdings | Cores designed by third parties | Cortex profile | References |
---|---|---|---|---|---|
ARMv1 | 32/26 | ARM1 | |||
ARMv2 | 32/26 | ARM2, ARM3 | Amber, STORM Open Soft Core[28] | ||
ARMv3 | 32 | ARM6, ARM7 | |||
ARMv4 | 32 | ARM8 | StrongARM, FA526 | ||
ARMv4T | 32 | ARM7TDMI, ARM9TDMI | |||
ARMv5 | 32 | ARM7EJ, ARM9E, ARM10E | XScale, FA626TE, Feroceon, PJ1/Mohawk | ||
ARMv6 | 32 | ARM11 | |||
ARMv6-M | 32 | ARM Cortex-M0, ARM Cortex-M0+, ARM Cortex-M1 | Microcontroller | ||
ARMv7-M | 32 | ARM Cortex-M3 | Microcontroller | ||
ARMv7E-M | 32 | ARM Cortex-M4 | Microcontroller | ||
ARMv7-R | 32 | ARM Cortex-R4, ARM Cortex-R5, ARM Cortex-R7 | Real-time | ||
ARMv7-A | 32 | ARM Cortex-A5, ARM Cortex-A7, ARM Cortex-A8, ARM Cortex-A9, ARM Cortex-A12, ARM Cortex-A15, ARM Cortex-A17 | Krait, Scorpion, PJ4/Sheeva, Apple A6/A6X (Swift) | Application | |
ARMv8-A | 64/32 | ARM Cortex-A53, ARM Cortex-A57[29] | X-Gene, Denver, Apple A7 (Cyclone), AMD K12 | Application | [30][31] |
ARMv8-R | 32 | No announcements yet | Real-time | [32][33] |
A list of vendors who implement ARM cores in their design (application specific standard products (ASSP), microprocessor and microcontrollers) is provided by ARM Holdings.[34]
Designed by ARM[edit]
ARM family | ARM architecture | ARM core | Feature | Cache (I / D),MMU | Typical MIPS @MHz |
---|---|---|---|---|---|
ARM1 | ARMv1 | ARM1 | First implementation | None | |
ARM2 | ARMv2 | ARM2 | ARMv2 added the MUL (multiply) instruction | None | 4 MIPS @ 8 MHz 0.33 DMIPS/MHz |
ARMv2a | ARM250 | Integrated MEMC (MMU), graphics and I/O processor. ARMv2a added the SWP and SWPB (swap) instructions | None, MEMC1a | 7 MIPS @ 12 MHz | |
ARM3 | ARMv2a | ARM3 | First integrated memory cache | 4 KB unified | 12 MIPS @ 25 MHz 0.50 DMIPS/MHz |
ARM6 | ARMv3 | ARM60 | ARMv3 first to support 32-bit memory address space (previously 26-bit) | None | 10 MIPS @ 12 MHz |
ARM600 | As ARM60, cache and coprocessor bus (for FPA10 floating-point unit) | 4 KB unified | 28 MIPS @ 33 MHz | ||
ARM610 | As ARM60, cache, no coprocessor bus | 4 KB unified | 17 MIPS @ 20 MHz 0.65 DMIPS/MHz |
||
ARM7 | ARMv3 | ARM700 | 8 KB unified | 40 MHz | |
ARM710 | As ARM700, no coprocessor bus | 8 KB unified | 40 MHz | ||
ARM710a | As ARM710 | 8 KB unified | 40 MHz 0.68 DMIPS/MHz |
||
ARM7TDMI | ARMv4T | ARM7TDMI(-S) | 3-stage pipeline, Thumb, ARMv4 first to drop legacy ARM26-bit addressing | None | 15 MIPS @ 16.8 MHz 63 DMIPS @ 70 MHz |
ARM710T | As ARM7TDMI, cache | 8 KB unified, MMU | 36 MIPS @ 40 MHz | ||
ARM720T | As ARM7TDMI, cache | 8 KB unified, MMU with FCSE (Fast Context Switch Extension) | 60 MIPS @ 59.8 MHz | ||
ARM740T | As ARM7TDMI, cache | MPU | |||
ARM7EJ | ARMv5TEJ | ARM7EJ-S | 5-stage pipeline, Thumb, Jazelle DBX, Enhanced DSP instructions | None | |
ARM8 | ARMv4 | ARM810[4][5] | 5-stage pipeline, static branch prediction, double-bandwidth memory | 8 KB unified, MMU | 84 MIPS @ 72 MHz 1.16 DMIPS/MHz |
ARM9TDMI | ARMv4T | ARM9TDMI | 5-stage pipeline, Thumb | None | |
ARM920T | As ARM9TDMI, cache | 16 KB / 16 KB, MMU with FCSE (Fast Context Switch Extension)[6] | 200 MIPS @ 180 MHz | ||
ARM922T | As ARM9TDMI, caches | 8 KB / 8 KB, MMU | |||
ARM940T | As ARM9TDMI, caches | 4 KB / 4 KB, MPU | |||
ARM9E | ARMv5TE | ARM946E-S | Thumb, Enhanced DSP instructions, caches | Variable, tightly coupled memories, MPU | |
ARM966E-S | Thumb, Enhanced DSP instructions | No cache, TCMs | |||
ARM968E-S | As ARM966E-S | No cache, TCMs | |||
ARMv5TEJ | ARM926EJ-S | Thumb, Jazelle DBX, Enhanced DSP instructions | Variable, TCMs, MMU | 220 MIPS @ 200 MHz | |
ARMv5TE | ARM996HS | Clockless processor, as ARM966E-S | No caches, TCMs, MPU | ||
ARM10E | ARMv5TE | ARM1020E | 6-stage pipeline, Thumb, Enhanced DSP instructions, (VFP) | 32 KB / 32 KB, MMU | |
ARM1022E | As ARM1020E | 16 KB / 16 KB, MMU | |||
ARMv5TEJ | ARM1026EJ-S | Thumb, Jazelle DBX, Enhanced DSP instructions, (VFP) | Variable, MMU or MPU | ||
ARM11 | ARMv6 | ARM1136J(F)-S[7] | 8-stage pipeline, SIMD, Thumb, Jazelle DBX, (VFP), Enhanced DSP instructions | Variable, MMU | 740 @ 532–665 MHz (i.MX31 SoC), 400–528 MHz |
ARMv6T2 | ARM1156T2(F)-S | 8-stage pipeline, SIMD, Thumb-2, (VFP), Enhanced DSP instructions | Variable, MPU | ||
ARMv6Z | ARM1176JZ(F)-S | As ARM1136EJ(F)-S | Variable, MMU + TrustZone | 965 DMIPS @ 772 MHz, up to 2,600 DMIPS with four processors[8] | |
ARMv6K | ARM11 MPCore | As ARM1136EJ(F)-S, 1–4 core SMP | Variable, MMU | ||
SecurCore | ARMv6-M | SC000 | 0.9 DMIPS/MHz | ||
ARMv4T | SC100 | ||||
ARMv7-M | SC300 | 1.25 DMIPS/MHz | |||
Cortex-M | ARMv6-M | Cortex-M0[9] | Microcontroller profile, Thumb + Thumb-2 subset (BL, MRS, MSR, ISB, DSB, DMB),[10] hardware multiply instruction (optional small), optional system timer, optional bit-banding memory | Optional cache, no TCM, no MPU | 0.84 DMIPS/MHz |
Cortex-M0+[11] | Microcontroller profile, Thumb + Thumb-2 subset (BL, MRS, MSR, ISB, DSB, DMB),[10] hardware multiply instruction (optional small), optional system timer, optional bit-banding memory | Optional cache, no TCM, optional MPU with 8 regions | 0.93 DMIPS/MHz | ||
Cortex-M1[12] | Microcontroller profile, Thumb + Thumb-2 subset (BL, MRS, MSR, ISB, DSB, DMB),[10] hardware multiply instruction (optional small), OS option adds SVC / banked stack pointer, optional system timer, no bit-banding memory | Optional cache, 0-1024 KB I-TCM, 0-1024 KB D-TCM, no MPU | 136 DMIPS @ 170 MHz,[13](0.8 DMIPS/MHz FPGA-dependent)[14] | ||
ARMv7-M | Cortex-M3[15] | Microcontroller profile, Thumb / Thumb-2, hardware multiply and divide instructions, optional bit-banding memory | Optional cache, no TCM, optional MPU with 8 regions | 1.25 DMIPS/MHz | |
ARMv7E-M | Cortex-M4[16] | Microcontroller profile, Thumb / Thumb-2 / DSP / optional FPv4 single-precision FPU, hardware multiply and divide instructions, optional bit-banding memory | Optional cache, no TCM, optional MPU with 8 regions | 1.25 DMIPS/MHz | |
Cortex-R | ARMv7-R | Cortex-R4[17] | Real-time profile, Thumb / Thumb-2 / DSP / optional VFPv3 FPU, hardware multiply and optional divide instructions, optional parity & ECC for internal buses / cache / TCM, 8-stage pipeline dual-core running lockstepwith fault logic | 0–64 KB / 0–64 KB, 0–2 of 0–8 MB TCM, opt MPU with 8/12 regions | |
Cortex-R5 (MPCore)[18] | Real-time profile, Thumb / Thumb-2 / DSP / optional VFPv3 FPU and precision, hardware multiply and optional divide instructions, optional parity & ECC for internal buses / cache / TCM, 8-stage pipeline dual-core running lock-step with fault logic / optional as 2 independent cores, low-latency peripheral port (LLPP), accelerator coherency port (ACP)[19] | 0–64 KB / 0–64 KB, 0–2 of 0–8 MB TCM, opt MPU with 12/16 regions | |||
Cortex-R7 (MPCore)[20] | Real-time profile, Thumb / Thumb-2 / DSP / optional VFPv3 FPU and precision, hardware multiply and optional divide instructions, optional parity & ECC for internal buses / cache / TCM, 11-stage pipeline dual-core running lock-step with fault logic / out-of-order execution / dynamic register renaming / optional as 2 independent cores, low-latency peripheral port (LLPP), ACP[19] | 0–64 KB / 0–64 KB, ? of 0–128 KB TCM, opt MPU with 16 regions | |||
Cortex-A | ARMv7-A | Cortex-A5[21] | Application profile, ARM / Thumb / Thumb-2 / DSP / SIMD / Optional VFPv4-D16 FPU / Optional NEON / Jazelle RCT and DBX, 1–4 cores / optional MPCore, snoop control unit (SCU), generic interrupt controller (GIC), accelerator coherence port (ACP) | 4-64 KB / 4-64 KB L1, MMU + TrustZone | 1.57 DMIPS/MHz per core |
Cortex-A7 MPCore[22] | Application profile, ARM / Thumb / Thumb-2 / DSP / VFPv4-D16 FPU / NEON / Jazelle RCT and DBX / Hardware virtualization, in-order execution, superscalar, 1–4 SMP cores, Large Physical Address Extensions (LPAE), snoop control unit (SCU), generic interrupt controller (GIC), ACP, architecture and feature set are identical to A15, 8-10 stage pipeline, low-power design[23] | 32 KB / 32 KB L1, 0–4 MB L2, MMU + TrustZone | 1.9 DMIPS/MHz per core | ||
Cortex-A8[24] | Application profile, ARM / Thumb / Thumb-2 / VFPv3 FPU / NEON / Jazelle RCT and DAC, 13-stage superscalarpipeline | 16-32 KB / 16–32 KB L1, 0–1 MB L2 opt ECC, MMU + TrustZone | Up to 2000 (2.0 DMIPS/MHz in speed from 600 MHz to greater than 1 GHz) | ||
Cortex-A9 MPCore[25] | Application profile, ARM / Thumb / Thumb-2 / DSP / Optional VFPv3 FPU / Optional NEON / Jazelle RCT and DBX, out-of-order speculative issue superscalar, 1–4 SMP cores, snoop control unit (SCU), generic interrupt controller (GIC), accelerator coherence port (ACP) | 16–64 KB / 16–64 KB L1, 0–8 MB L2 opt parity, MMU + TrustZone | 2.5 DMIPS/MHz per core, 10,000 DMIPS @ 2 GHz on Performance Optimized TSMC40G (dual-core) | ||
Cortex-A12[26] | Application profile, ARM / Thumb-2 / DSP / VFPv4 FPU / NEON / Hardware virtualization, out-of-order speculative issue superscalar, 1–4 SMP cores, Large Physical Address Extensions (LPAE), snoop control unit (SCU), generic interrupt controller (GIC), accelerator coherence port (ACP) | 32-64 KB / 32 KB L1, 256 KB-8 MB L2 | 3.0 DMIPS/MHz per core | ||
Cortex-A15 MPCore[27] | Application profile, ARM / Thumb / Thumb-2 / DSP / VFPv4 FPU / NEON / Integer divide / Fused MAC / Jazelle RCT / Hardware virtualization, out-of-order speculative issue superscalar, 1–4 SMP cores, Large Physical Address Extensions (LPAE), snoop control unit (SCU), generic interrupt controller (GIC), ACP, 15-24 stage pipeline[23] | 32 KB w/parity / 32 KB w/ECCL1, 0–4 MB L2, L2 has ECC, MMU + TrustZone | At least 3.5 DMIPS/MHz per core (up to 4.01 DMIPS/MHz depending on implementation)[28] | ||
Cortex-A17 MPCore | Application profile, ARM / Thumb / Thumb-2 / DSP / VFPv4 FPU / NEON / Integer divide / Fused MAC / Jazelle RCT / Hardware virtualization, out-of-order speculative issue superscalar, 1–4 SMP cores, Large Physical Address Extensions (LPAE), snoop control unit (SCU), generic interrupt controller (GIC), ACP | MMU + TrustZone | |||
Cortex-A50 | ARMv8-A | Cortex-A53[29] | Application profile, AArch32 and AArch64, 1-4 SMP cores, Trustzone, NEON advanced SIMD, VFPv4, hardware virtualization, dual issue, in-order pipeline | 8-64 KB w/parity / 8-64 KB w/ECC L1 per core, 128 KB-2 MB L2 shared, 40-bit physical addresses | 2.3 DMIPS/MHz |
Cortex-A57[30] | Application profile, AArch32 and AArch64, 1-4 SMP cores, Trustzone, NEON advanced SIMD, VFPv4, hardware virtualization, multi-issue, deeply out-of-order pipeline | 48 KB w/DED parity / 32 KB w/ECC L1 per core, 512 KB-2 MB L2 shared, 44-bit physical addresses | At least 4.1 DMIPS/MHz per core (up to 4.76 DMIPS/MHz depending on implementation) | ||
ARM family | ARM architecture | ARM core | Feature | Cache (I / D),MMU | Typical MIPS @ MHz |
Designed by third parties[edit]
These cores implement the ARM instruction set, and were developed independently by companies with an architectural license from ARM.
Family | Instruction set | Microarchitecture | Feature | Cache (I / D), MMU | Typical MIPS @ MHz |
---|---|---|---|---|---|
StrongARM | ARMv4 | SA-110 | 5-stage pipeline | 16 KB / 16 KB, MMU | 100–206 MHz 1.0 DMIPS/MHz |
SA-1100 | derivative of the SA-110 | 16 KB / 8 KB, MMU | |||
Faraday[31] | ARMv4 | FA510 | 6-stage pipeline | Up to 32 KB / 32 KB cache, MPU | 1.26 DMIPS/MHz 100–200 MHz |
FA526 | Up to 32 KB / 32 KB cache, MMU | 1.26 MIPS/MHz 166-300 MHz |
|||
FA626 | 8-stage pipeline | 32 KB / 32 KB cache, MMU | 1.35 DMIPS/MHz 500 MHz |
||
ARMv5TE | FA606TE | 5-stage pipeline | No cache, no MMU | 1.22 DMIPS/MHz 200 MHz |
|
FA626TE | 8-stage pipeline | 32 KB / 32 KB cache, MMU | 1.43 MIPS/MHz 800 MHz |
||
FMP626TE | 8-stage pipeline, SMP | 1.43 MIPS/MHz 500 MHz |
|||
FA726TE | 13 stage pipeline, dual issue | 2.4 DMIPS/MHz 1000 MHz |
|||
XScale | ARMv5TE | XScale | 7-stage pipeline, Thumb, Enhanced DSP instructions | 32 KB / 32 KB, MMU | 133–400 MHz |
Bulverde | Wireless MMX, Wireless SpeedStep added | 32 KB / 32 KB, MMU | 312–624 MHz | ||
Monahans[32] | Wireless MMX2 added | 32 KB / 32 KB (L1), optional L2 cache up to 512 KB, MMU | Up to 1.25 GHz | ||
MarvellSheeva | ARMv5 | Feroceon | 5-8 stage pipeline, single-issue | 16 KB / 16 KB, MMU | 600–2000 MHz |
Jolteon | 5-8 stage pipeline, dual-issue | 32 KB / 32 KB, MMU | |||
PJ1 (Mohawk) | 5-8 stage pipeline, single-issue, Wireless MMX2 | 32 KB / 32 KB, MMU | 1.46 DMIPS/MHz 1.06 GHz |
||
ARMv6 / ARMv7-A | PJ4 | 6-9 stage pipeline, dual-issue, Wireless MMX2, SMP | 32 KB / 32 KB, MMU | 2.41 DMIPS/MHz 1.6 GHz |
|
Snapdragon | ARMv7-A | Scorpion[33] | 1 or 2 cores. ARM / Thumb / Thumb-2 / DSP / SIMD / VFPv3 FPU / NEON (128-bit wide) | 256 KB L2 per core | 2.1 DMIPS/MHz per core |
Krait[33] | 1, 2, or 4 cores. ARM / Thumb / Thumb-2 / DSP / SIMD / VFPv4 FPU / NEON (128-bit wide) | 4 KB / 4 KB L0, 16 KB / 16 KB L1, 512 KB L2 per core | 3.3 DMIPS/MHz per core | ||
Apple A6, Apple A6X |
ARMv7-A | Swift[34] | 2 cores. ARM / Thumb / Thumb-2 / DSP / SIMD / VFPv4 FPU / NEON | L1: 32 KB / 32 KB, L2: 1 MB | 3.5 DMIPS/MHz per core |
Apple A7 | ARMv8-A | Cyclone | 2 cores. ARM / Thumb / Thumb-2 / DSP / SIMD / VFPv4 FPU / NEON / TrustZone /AArch64 | L1: 64 KB / 64 KB, L2: 1 MB | 1.3 GHz |
Apple A8 | ARMv8-A | Cyclone gen 2 | 2 cores. ARM / Thumb / Thumb-2 / DSP / SIMD / VFPv4 FPU / NEON / TrustZone /AArch64 | L1: (unknown);KB, L2: (unknown);MB | 1.4 GHz |
X-Gene | ARMv8-A | X-Gene | 64-bit, quad issue, SMP, 64 cores[35] | Cache, MMU, virtualization | 3 GHz |
Denver | ARMv8-A | Denver | 64-bit | 128 KB I / 64 KB D | Up to 2.5 GHz |
ThunderX | ARMv8-A | ThunderX | 8-16 / 24-48 cores (×2 w/two chips). 64-bit | Up to 2.5 GHz |
ARM core timeline[edit]
The following table lists each core by the year it was announced.[36][37]
Year | Classic cores | Cortex cores | ||||||
---|---|---|---|---|---|---|---|---|
ARM7 | ARM8 | ARM 9 | ARM10 | ARM11 | Embedded | Real-time | Application | |
1996 | ARM810 | |||||||
1997 | ARM9TDMI | |||||||
1998 | ARM7TDMI(-S) | |||||||
1999 | ||||||||
2000 | ||||||||
2001 | ||||||||
2002 | ARM1136J(F)-S | |||||||
2003 | ARM966E-S ARM968E-S |
ARM1156T2(F)-S ARM1176JZ(F)-S |
||||||
2004 | Cortex-M3 | |||||||
2005 | Cortex-A8 | |||||||
2006 | ARM996HS | |||||||
2007 | Cortex-M1 | Cortex-A9 | ||||||
2008 | ||||||||
2009 | Cortex-M0 | Cortex-A5 | ||||||
2010 | Cortex-M4 | Cortex-A15 | ||||||
2011 | Cortex-R4 Cortex-R5 Cortex-R7 |
Cortex-A7 | ||||||
2012 | Cortex-M0+ | Cortex-A53 Cortex-A57 |
||||||
2013 | Cortex-A12 | |||||||
2014 | Cortex-A17 |
ARM architectures的更多相关文章
- ARM Compiler toolchain Compiler -- Supported ARM architectures
--cpu=name This option enables code generation for the selected ARM processor or architecture. Synta ...
- ARM architecture
http://en.wikipedia.org/wiki/ARM_architecture ARM architecture ARM architectures The ARM logo De ...
- {ICIP2014}{收录论文列表}
This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinc ...
- jni使用
版权声明:本文为博主原创文章,未经博主允许不得转载. 目录(?)[-] 简介 详解 JNI 元素 JNI函数实战 AndroidmkApplicationmk Androidmk Applicat ...
- virt-install详解
man virt-install VIRT-INSTALL() Virtual Machine Manager VIRT-INSTALL() NAME virt-install - provision ...
- How to Create a Framework for iOS[RE]
In the previous tutorial, you learned how to create a reusable knob control. However, it might not b ...
- JNI 解析
JNI是什么? JNI(Java Native Interface)意为JAVA本地调用,它允许Java代码和其他语言写的代码进行交互,简单的说,一种在Java虚拟机控制下执行代码的标准机制. NDK ...
- JNI 实战全面解析
项目决定移植一款C++开源项目到Android平台,开始对JNI深入研究. JNI是什么? JNI(JavaNative Interface)意为Java本地调用,它允许Java代码和其他语言写的代码 ...
- 谢宝友: 手把手教你给Linux内核发patch
本文系转载,著作权归作者所有. 商业转载请联系作者获得授权,非商业转载请注明出处. 作者: 谢宝友 来源: 微信公众号 linux阅码场 (id: linuxdev) 本文简介 本文一步一 ...
随机推荐
- PHP截取中文字符串
这里的输出的长度是6,那么一个汉字的字符长度就是3咯,可是老师演示的一个字符的长度却是2,百思不得其解. 查了一下资料发现,这个问题的答案与系统所采用的字符编码方式有关: 1. utf-8 如果系统采 ...
- js四舍五入
7-13 向上取整ceil() 7-14 向下取整floor() 7-15 四舍五入round() 7-16 随机数 random()
- hdu 3572 Task Schedule(最大流)2010 ACM-ICPC Multi-University Training Contest(13)——Host by UESTC
题意: 告诉我们有m个任务和k个机器.第i个任务需要ci天完成,最早从第ai天开始,最晚在第bi天结束.每台机器每天可以执行一个任务.问,是否可以将所有的任务都按时完成? 输入: 首行输入一个整数t, ...
- [Java]获取图片高和宽
通过javax.imageio.ImageIO类中的read()函数读取的图片,存放在类java.awt.image.BufferedImage类中.调用BufferedImage类中的getWidt ...
- Delphi中实现MDI子窗体(转)
Delphi中实现MDI子窗体 用MDI实现浏览子窗口,具有窗口管理功能,同屏观看多个网页的内容 ① 多文档窗体(MDI) MDI窗体是一种具有主子结构的窗体体系,微软的Word便是其中的一 ...
- leetcode:Palindrome Number
Question: Determine whether an integer is a palindrome. Do this without extra space. Some hints: Cou ...
- 以Akka为示例,介绍Actor模型
许多开发者在创建和维护多线程应用程序时经历过各种各样的问题,他们希望能在一个更高层次的抽象上进行工作,以避免直接和线程与锁打交道.为了帮助这些开发者,Arun Manivannan编写了一系列的博客帖 ...
- 演义江湖PC端意见汇总
写在前面: 1.自己的游戏自己玩玩爽不爽,自己爽了才能说玩家可能会接受,自己都玩不下去玩家凭什么玩你的游戏 2.如果你负责美术,那么你到游戏中看看,你如果不能接受,玩家也会觉得游戏很丑 3.如果你负责 ...
- JIT(动态编译)和AOT(静态编译)编译技术比较
Java 应用程序的性能经常成为开发社区中的讨论热点.因为该语言的设计初衷是使用解释的方式支持应用程序的可移植性目标,早期 Java 运行时所提供的性能级别远低于 C 和 C++ 之类的编译语言.尽管 ...
- China特色创新现状
1,unity桌面 2,http://www.cs2c.com.cn/ 3,http://os.51cto.com/art/200602/20350.htm 4,http://zhidao.baidu ...