BP神经网络算法学习
BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是眼下应用最广泛的神经网络模型之中的一个。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描写叙述这样的映射关系的数学方程。
一个神经网络的结构示意图例如以下所看到的。

BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。输入层神经元的个数由样本属性的维度决定,输出层神经元的个数由样本分类个数决定。隐藏层的层数和每层的神经元个数由用户指定。每一层包括若干个神经元,每一个神经元包括一个而阈值
,用来改变神经元的活性。网络中的弧线
表示前一层神经元和后一层神经元之间的权值。每一个神经元都有输入和输出。输入层的输入和输出都是训练样本的属性值。
对于隐藏层和输出层的输入
当中,
是由上一层的单元i到单元j的连接的权;
是上一层的单元i的输出;而
是单元j的阈值。
神经网络中神经元的输出是经由赋活函数计算得到的。该函数用符号表现单元代表的神经元活性。赋活函数一般使用simoid函数(或者logistic函数)。神经元的输出为:

除此之外,神经网络中有一个学习率(l)的概念,通常取0和1之间的值,并有助于找到全局最小。假设学习率太小,学习将进行得非常慢。假设学习率太大,可能出如今不适当的解之间摆动。
交代清楚了神经网络中基本要素,我们来看一下BP算法的学习过程:
BPTrain(){
初始化network的权和阈值。
while 终止条件不满足 {
for samples中的每一个训练样本X {
// 向前传播输入
for 隐藏或输出层每一个单元j {
;// 相对于前一层i,计算单元j的净输入
;// 计算单元j的输出
}
// 后向传播误差
for 输出层每一个单元j {
;// 计算误差
}
for 由最后一个到第一个隐藏层,对于隐藏层每一个单元j {
;// k是j的下一层中的神经元
}
for network中每一个权
{
; // 权增值
; // 权更新
}
for network中每一个偏差
{
; // 偏差增值
;// 偏差更新
}
}
}
算法基本流程就是:
1、初始化网络权值和神经元的阈值(最简单的办法就是随机初始化)
2、前向传播:依照公式一层一层的计算隐层神经元和输出层神经元的输入和输出。
3、后向传播:依据公式修正权值和阈值
直到满足终止条件。
算法中还有几点是须要说明的:
1、关于
,
是神经元的误差。
对于输出层神经元
,当中,
是单元j的实际输 出,而
是j基于给定训练样本的已知类标号的真正输出。
对于隐藏层神经元
,当中,
是由下一较高层中单元k到单元j的连接权,而
是单元k的误差。
权值增量是
,阈值增量是
,当中
是学习率。
对于
的推导採用了梯度下降的算法。推导的前提是保证输出单元的均方差最小。
,当中P是样本总数,m是输出层神经元个数
是样本实际输出,
是神经网络输出。
梯度下降思路就是对
求
的导数。
对于输出层:


当中的
就是
。
对于隐藏层:


当中
=
就是隐藏层的误差计算公式。
2、关于终止条件,能够有多种形式:
§ 前一周期全部的
都太小,小于某个指定的阈值。
§ 前一周期未正确分类的样本百分比小于某个阈值。
§ 超过预先指定的周期数。
§ 神经网络的输出值和实际输出值的均方误差小于某一阈值。
一般地,最后一种终止条件的准确率更高一些。
在实际使用BP神经网络的过程中,还会有一些实际的问题:
1、 样本处理。对于输出,假设仅仅有两类那么输出为0和1,仅仅有当
趋于正负无穷大的时候才会输出0,1。因此条件可适当放宽,输出>0.9时就觉得是1,输出<0.1时觉得是0。对于输入,样本也须要做归一化处理。
2、 网络结构的选择。主要是指隐藏层层数和神经元数决定了网络规模,网络规模和性能学习效果密切相关。规模大,计算量大,并且可能导致过度拟合;可是规模小,也可能导致欠拟合。
3、 初始权值、阈值的选择,初始值对学习结果是有影响的,选择一个合适初始值也很重要。
4、 增量学习和批量学习。上面的算法和数学推导都是基于批量学习的,批量学习适用于离线学习,学习效果稳定性好;增量学习使用于在线学习,它对输入样本的噪声是比較敏感的,不适合剧烈变化的输入模式。
5、 对于激励函数和误差函数也有其它的选择。
总的来说BP算法的可选项比較多,针对特定的训练数据往往有比較大的优化空间。
BP神经网络算法学习的更多相关文章
- bp神经网络算法
对于BP神经网络算法,由于之前一直没有应用到项目中,今日偶然之时 进行了学习, 这个算法的基本思路是这样的:不断地迭代优化网络权值,使得输入与输出之间的映射关系与所期望的映射关系一致,利用梯度下降的方 ...
- 二、单层感知器和BP神经网络算法
一.单层感知器 1958年[仅仅60年前]美国心理学家FrankRosenblant剔除一种具有单层计算单元的神经网络,称为Perceptron,即感知器.感知器研究中首次提出了自组织.自学习的思想, ...
- BP神经网络算法预测销量高低
理论以前写过:https://www.cnblogs.com/fangxiaoqi/p/11306545.html,这里根据天气.是否周末.有无促销的情况,来预测销量情况. function [ ma ...
- 数据挖掘系列(9)——BP神经网络算法与实践
神经网络曾经很火,有过一段低迷期,现在因为深度学习的原因继续火起来了.神经网络有很多种:前向传输网络.反向传输网络.递归神经网络.卷积神经网络等.本文介绍基本的反向传输神经网络(Backpropaga ...
- BP神经网络算法推导及代码实现笔记zz
一. 前言: 作为AI入门小白,参考了一些文章,想记点笔记加深印象,发出来是给有需求的童鞋学习共勉,大神轻拍! [毒鸡汤]:算法这东西,读完之后的状态多半是 --> “我是谁,我在哪?” 没事的 ...
- [matlab]bp神经网络工具箱学习笔记
基本就三个函数: newff():创建一个bp神经网络 train():训练函数 sim():仿真函数 同时具有可视化界面,但目前不知道可视化界面如何进行仿真,且设置不太全 工具箱:Neural ne ...
- JAVA实现BP神经网络算法
工作中需要预测一个过程的时间,就想到了使用BP神经网络来进行预测. 简介 BP神经网络(Back Propagation Neural Network)是一种基于BP算法的人工神经网络,其使用BP算法 ...
- BP神经网络算法改进
周志华机器学习BP改进 试设计一个算法,能通过动态调整学习率显著提升收敛速度,编程实现该算法,并选择两个UCI数据集与标准的BP算法进行实验比较. 1.方法设计 传统的BP算法改进主要有两类: - 启 ...
- R_Studio(神经网络)BP神经网络算法预测销量的高低
BP神经网络 百度百科:传送门 BP(back propagation)神经网络:一种按照误差逆向传播算法训练的多层前馈神经网络,是目前应用最广泛的神经网络 #设置文件工作区间 setwd('D:\\ ...
随机推荐
- lua的三目运算符
会lua的都知道三目运算符在lua中的写法是 a and b or c 但这里有个问题,就是当b是nil的时候会返回c的值 今天无意中看到一个大神的写法 (a and {b} or {c})[1] 不 ...
- JAVA CAS原理、unsafe、AQS
concurrent包的实现 由于java的CAS同时具有 volatile 读和volatile写的内存语义,因此Java线程之间的通信现在有了下面四种方式: A线程写volatile变量,随后B线 ...
- 开源Math.NET基础数学类库使用(11)C#计算相关系数
阅读目录 前言 1.Math.NET计算相关系数的类 2.Correlation的实现 3.使用案例 4.资源 本博客所有文章分类的总目录:[总目录]本博客博文总目录-实 ...
- 一个DataTable赋值给另一个DataTable的常用方法
DataView view = new DataView();view.Table = DataTableA;view.RowFilter = "itemType = 'book'" ...
- D.xml
pre{ line-height:1; color:#1e1e1e; background-color:#f0f0f0; font-size:16px;}.sysFunc{color:#627cf6; ...
- <转>如何利用多核CPU来加速你的Linux命令 — awk, sed, bzip2, grep, wc等
原文链接:http://www.vaikan.com/use-multiple-cpu-cores-with-your-linux-commands/ 你是否曾经有过要计算一个非常大的数据(几百GB) ...
- SynchronousQueue
SynchronousQueue是一个没有数据缓冲的BlockingQueue,生产者线程对其的插入操作put必须等待消费者的移除操作take,反过来也一样. 不像ArrayBlockingQueue ...
- 【LeetCode】83 - Remove Duplicates from Sorted Array
Given a sorted array, remove the duplicates in place such that each element appear only once and ret ...
- mybatis系列-15-查询缓存
15.1 什么是查询缓存 mybatis提供查询缓存,用于减轻数据压力,提高数据库性能. mybaits提供一级缓存,和二级缓存. 一级缓存是SqlSession级别的缓存.在操作数据库时需要 ...
- PHP强大的内置filter (一)
<?php #PHP内置的validate filter $input_data = True; $result = filter_var($input_data,FILTER_VALIDATE ...