Intervals

题目连接:

http://codeforces.com/gym/100231/attachments

Description

Start with an integer, N0, which is greater than 0. Let N1 be the number of ones in the binary representation of N0. So, if N0 = 27, N1 = 4. For all i > 0, let Ni be the number of ones in the binary

representation of Ni−1. This sequence will always converge to one. For any starting number, N0, let K be the minimum value of i ≥ 0 for which Ni = 1. For example, if N0 = 31, then N1 = 5, N2 = 2, N3 = 1, so K = 3. Given a range of consecutive numbers, and a value X, how many numbers in the range have a K value equal to X?

Input

There will be several test cases in the input. Each test case will consist of three integers on a single line:

l, r, X, where l and r (1 ≤ l ≤ r ≤ 1018) are the lower and upper limits of a range of integers, and X

(0 ≤ X ≤ 10) is the target value for K. The input will end with a line with three 0s.

Output

For each test case, output a single integer, representing the number of integers in the range from l to

r (inclusive) which have a K value equal to X in the input. Print each integer on its own line with no

spaces. Do not print any blank lines between answers.

Sample Input

31 31 3

31 31 1

27 31 1

27 31 2

1023 1025 1

1023 1025 2

0 0 0

Sample Output

1

0

0

3

1

1

Hint

题意

首先给你Ni的定义,表示第几轮的时候,这个数是多少,Ni = Ni-1二进制表示下的1的个数

k 表示第几步的时候,Ni = 1

给你l,r,x

问你在l,r区间内,k等于x的数有多少个

题解:

我们首先预处理vis[i]表示有i个1的时候的步数,这个用dp很容易解决

然后我们就可以数位dp去做了,做[1,x]里面二进制数为k个的数量

注意特判1的情况,比较麻烦

代码

#include<bits/stdc++.h>
using namespace std; long long l,r,t;
int vis[100];
long long ans = 0;
int getone(long long x)
{
int c=0;
while(x>0)
{
if((x&1)==1)
c++;
x>>=1;
}
return c;
}
long long f[70][70];
void init()
{
memset(f,0,sizeof(f));
f[0][0] = 1LL;
for(int i=1;i<=62;i++)
{
f[i][0] = 1LL;
for(int j=1;j<=i;j++)
{
f[i][j] = f[i-1][j-1] + f[i-1][j];
}
}
}
long long calc(long long x,int k)
{
int tot = 0;
long long ans = 0;
for(long long i=62;i>0;i--)
{
if(x&(1LL<<i))
{
tot++;
if(tot>k) break;
x ^= (1LL<<i);
}
if((1LL<<(i-1LL))<=x)
{
if(k>=tot)
ans += f[i-1][k-tot];
}
}
if(tot + x == k) ans++;
return ans;
}
long long solve(long long limit,int x)
{
ans=0;
for(int i=1;i<=61;i++)
if(vis[i]==x)
{
if(i==1)
ans--;
ans+=calc(limit,i);
}
return ans;
}
int main()
{
init();
vis[1]=1;
for(int i=2;i<=61;i++)
vis[i]=vis[getone(i)]+1;
while(scanf("%lld%lld%d",&l,&r,&t)!=EOF)
{
if(l==0&&r==0&&t==0)return 0;
if(t==0)
{
if(l==1)
printf("1\n");
else
printf("0\n");
continue;
}
if(t==1)
{
if(l==1)
printf("%lld\n",solve(r,t)-solve(l-1,t)-1);
else
printf("%lld\n",solve(r,t)-solve(l-1,t));
}
else
printf("%lld\n",solve(r,t)-solve(l-1,t));
}
}

Codeforces Gym 100231L Intervals 数位DP的更多相关文章

  1. codeforces 55D - Beautiful numbers(数位DP+离散化)

    D. Beautiful numbers time limit per test 4 seconds memory limit per test 256 megabytes input standar ...

  2. Codeforces #55D-Beautiful numbers (数位dp)

    D. Beautiful numbers time limit per test 4 seconds memory limit per test 256 megabytes input standar ...

  3. Codeforces - 55D Beautiful numbers (数位dp+数论)

    题意:求[L,R](1<=L<=R<=9e18)区间中所有能被自己数位上的非零数整除的数的个数 分析:丛数据量可以分析出是用数位dp求解,区间个数可以转化为sum(R)-sum(L- ...

  4. CodeForces - 55D - Beautiful numbers(数位DP,离散化)

    链接: https://vjudge.net/problem/CodeForces-55D 题意: Volodya is an odd boy and his taste is strange as ...

  5. Codeforces Gym 100231B Intervals 线段树+二分+贪心

    Intervals 题目连接: http://codeforces.com/gym/100231/attachments Description 给你n个区间,告诉你每个区间内都有ci个数 然后你需要 ...

  6. CodeForces 628D Magic Numbers (数位dp)

    题意:找到[a, b]符合下列要求的数的个数. 1.该数字能被m整除 2.该数字奇数位全不为d,偶数位全为d 分析: 1.dp[当前的位数][截止到当前位所形成的数对m取余的结果][当前数位上的数字是 ...

  7. FZU2179/Codeforces 55D beautiful number 数位DP

    题目大意: 求  1(m)到n直接有多少个数字x满足 x可以整出这个数字的每一位上的数字 思路: 整除每一位.只需要整除每一位的lcm即可 但是数字太大,dp状态怎么表示呢 发现 1~9的LCM 是2 ...

  8. CodeForces - 55D Beautiful numbers —— 数位DP

    题目链接:https://vjudge.net/problem/CodeForces-55D D. Beautiful numbers time limit per test 4 seconds me ...

  9. Codeforces 981 D.Bookshelves(数位DP)

    Codeforces 981 D.Bookshelves 题目大意: 给n个数,将这n个数分为k段,(n,k<=50)分别对每一段求和,再将每个求和的结果做与运算(&).求最终结果的最大 ...

随机推荐

  1. 《DevOps故障排除:Linux服务器运维最佳实践》读书笔记

    首先,这本书是Linux.CN赠送的,多谢啦~ http://linux.cn/thread-12733-1-1.html http://linux.cn/thread-12754-1-1.html ...

  2. nagios-解决监控页面上的乱码

    1. 前景 在nagios的监控页面上发现返回来的信息为乱码,如下图所示: 查看相关日志,发现正常显示汉字,如下: 2. 解决方法(以下两个步骤缺一不可) 主要原因分析如下: 在nagios服务器上发 ...

  3. 【LeetCode】101 - Symmetric Tree

    Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center). For e ...

  4. jqueryMobile

    <!DOCTYPE html> <html lang="zh-CN"> <head> <meta charset="UTF-8& ...

  5. 转自 处理老版PIL 到 pillow

    帮新同事部署开发环境, 由于项目代码里用到了PIL库处理图片, 导致一些图片在浏览器中无法正常显示.  几番折腾, 解决了问题, 这里记录一下报的问题, 及解决方法: 1. python版本不对, 6 ...

  6. jquery cookie用法(获取cookie值,删除cookie)

    1.引入文件 2.具体操作 $.cookie('the_cookie'); // 读取 cookie $.cookie('the_cookie', 'the_value'); // 存储 cookie ...

  7. JVM性能优化,提高Java的伸缩性

    很多程序员在解决JVM性能问题的时候,花开了很多时间去调优应用程序级别的性能瓶颈,当你读完这本系列文章之后你会发现我可能更加系统地看待这类的问题.我说过JVM的自身技术限制了Java企业级应用的伸缩性 ...

  8. Spark RDD概念学习系列之RDD的缓存(八)

      RDD的缓存 RDD的缓存和RDD的checkpoint的区别 缓存是在计算结束后,直接将计算结果通过用户定义的存储级别(存储级别定义了缓存存储的介质,现在支持内存.本地文件系统和Tachyon) ...

  9. dedecms lnmp 环境搭建。备忘录非教程

    ssh链接到linux服务器,我用的centos 6.5 64位的. #设置dns,ect/reserv.conf 设置,注释掉原来的nameserver,添加nameserver=8.8.8.8访问 ...

  10. hdu 5025 Saving Tang Monk(bfs+状态压缩)

    Description <Journey to the West>(also <Monkey>) is one of the Four Great Classical Nove ...