Intervals

题目连接:

http://codeforces.com/gym/100231/attachments

Description

Start with an integer, N0, which is greater than 0. Let N1 be the number of ones in the binary representation of N0. So, if N0 = 27, N1 = 4. For all i > 0, let Ni be the number of ones in the binary

representation of Ni−1. This sequence will always converge to one. For any starting number, N0, let K be the minimum value of i ≥ 0 for which Ni = 1. For example, if N0 = 31, then N1 = 5, N2 = 2, N3 = 1, so K = 3. Given a range of consecutive numbers, and a value X, how many numbers in the range have a K value equal to X?

Input

There will be several test cases in the input. Each test case will consist of three integers on a single line:

l, r, X, where l and r (1 ≤ l ≤ r ≤ 1018) are the lower and upper limits of a range of integers, and X

(0 ≤ X ≤ 10) is the target value for K. The input will end with a line with three 0s.

Output

For each test case, output a single integer, representing the number of integers in the range from l to

r (inclusive) which have a K value equal to X in the input. Print each integer on its own line with no

spaces. Do not print any blank lines between answers.

Sample Input

31 31 3

31 31 1

27 31 1

27 31 2

1023 1025 1

1023 1025 2

0 0 0

Sample Output

1

0

0

3

1

1

Hint

题意

首先给你Ni的定义,表示第几轮的时候,这个数是多少,Ni = Ni-1二进制表示下的1的个数

k 表示第几步的时候,Ni = 1

给你l,r,x

问你在l,r区间内,k等于x的数有多少个

题解:

我们首先预处理vis[i]表示有i个1的时候的步数,这个用dp很容易解决

然后我们就可以数位dp去做了,做[1,x]里面二进制数为k个的数量

注意特判1的情况,比较麻烦

代码

#include<bits/stdc++.h>
using namespace std; long long l,r,t;
int vis[100];
long long ans = 0;
int getone(long long x)
{
int c=0;
while(x>0)
{
if((x&1)==1)
c++;
x>>=1;
}
return c;
}
long long f[70][70];
void init()
{
memset(f,0,sizeof(f));
f[0][0] = 1LL;
for(int i=1;i<=62;i++)
{
f[i][0] = 1LL;
for(int j=1;j<=i;j++)
{
f[i][j] = f[i-1][j-1] + f[i-1][j];
}
}
}
long long calc(long long x,int k)
{
int tot = 0;
long long ans = 0;
for(long long i=62;i>0;i--)
{
if(x&(1LL<<i))
{
tot++;
if(tot>k) break;
x ^= (1LL<<i);
}
if((1LL<<(i-1LL))<=x)
{
if(k>=tot)
ans += f[i-1][k-tot];
}
}
if(tot + x == k) ans++;
return ans;
}
long long solve(long long limit,int x)
{
ans=0;
for(int i=1;i<=61;i++)
if(vis[i]==x)
{
if(i==1)
ans--;
ans+=calc(limit,i);
}
return ans;
}
int main()
{
init();
vis[1]=1;
for(int i=2;i<=61;i++)
vis[i]=vis[getone(i)]+1;
while(scanf("%lld%lld%d",&l,&r,&t)!=EOF)
{
if(l==0&&r==0&&t==0)return 0;
if(t==0)
{
if(l==1)
printf("1\n");
else
printf("0\n");
continue;
}
if(t==1)
{
if(l==1)
printf("%lld\n",solve(r,t)-solve(l-1,t)-1);
else
printf("%lld\n",solve(r,t)-solve(l-1,t));
}
else
printf("%lld\n",solve(r,t)-solve(l-1,t));
}
}

Codeforces Gym 100231L Intervals 数位DP的更多相关文章

  1. codeforces 55D - Beautiful numbers(数位DP+离散化)

    D. Beautiful numbers time limit per test 4 seconds memory limit per test 256 megabytes input standar ...

  2. Codeforces #55D-Beautiful numbers (数位dp)

    D. Beautiful numbers time limit per test 4 seconds memory limit per test 256 megabytes input standar ...

  3. Codeforces - 55D Beautiful numbers (数位dp+数论)

    题意:求[L,R](1<=L<=R<=9e18)区间中所有能被自己数位上的非零数整除的数的个数 分析:丛数据量可以分析出是用数位dp求解,区间个数可以转化为sum(R)-sum(L- ...

  4. CodeForces - 55D - Beautiful numbers(数位DP,离散化)

    链接: https://vjudge.net/problem/CodeForces-55D 题意: Volodya is an odd boy and his taste is strange as ...

  5. Codeforces Gym 100231B Intervals 线段树+二分+贪心

    Intervals 题目连接: http://codeforces.com/gym/100231/attachments Description 给你n个区间,告诉你每个区间内都有ci个数 然后你需要 ...

  6. CodeForces 628D Magic Numbers (数位dp)

    题意:找到[a, b]符合下列要求的数的个数. 1.该数字能被m整除 2.该数字奇数位全不为d,偶数位全为d 分析: 1.dp[当前的位数][截止到当前位所形成的数对m取余的结果][当前数位上的数字是 ...

  7. FZU2179/Codeforces 55D beautiful number 数位DP

    题目大意: 求  1(m)到n直接有多少个数字x满足 x可以整出这个数字的每一位上的数字 思路: 整除每一位.只需要整除每一位的lcm即可 但是数字太大,dp状态怎么表示呢 发现 1~9的LCM 是2 ...

  8. CodeForces - 55D Beautiful numbers —— 数位DP

    题目链接:https://vjudge.net/problem/CodeForces-55D D. Beautiful numbers time limit per test 4 seconds me ...

  9. Codeforces 981 D.Bookshelves(数位DP)

    Codeforces 981 D.Bookshelves 题目大意: 给n个数,将这n个数分为k段,(n,k<=50)分别对每一段求和,再将每个求和的结果做与运算(&).求最终结果的最大 ...

随机推荐

  1. JdbcTemplate与事务

    JdbcTemplate操作采用的是JDBC默认的AutoCommit模式,也就是说我们还无法保证数据操作的原子性(要么全部生效,要么全部无效),如: JdbcTemplate jdbcTemplat ...

  2. 【转】linux下mkisofs制作光盘映像cdrecord刻录光盘

    1.制作光盘映像文件 $mkisofs -R -o /var/tmp/oracle.iso /home/oracle $mkisofs -o myiso.iso /home/oracle/data 补 ...

  3. javascript的变态位运算

    javascript的变态位运算 var a = "10" | 0; alert(a); alert (typeof a);结果为10,number. 这就是说这条语句可以将字符串 ...

  4. Exploit用法示例

    一.msf> show exploits与msf> show payloads:这两条命令用于展示Metaploit目录中所有可用的漏洞利用代码和攻击载荷. 二.msf> searc ...

  5. Spark1.0.x入门指南

    1 节点说明   IP Role 192.168.1.111 ActiveNameNode 192.168.1.112 StandbyNameNode,Master,Worker 192.168.1. ...

  6. NServiceBus教程-消息传递与处理

    nservicebus"的容错默认"设计的一部分,基础设施管理事务自动所以你不需要记住所有的线程和状态管理要素配置. 客户端和服务器 理想情况下,服务器代码处理消息事务,但它往往不 ...

  7. html5 canvas图片反色

    <!doctype html> <html> <head> <meta charset="utf-8"> <title> ...

  8. VMWare高可用集群在企业的应用

    650) this.width=650;" border="0" src="http://img1.51cto.com/attachment/201011/21 ...

  9. Cocos2d-x 关于Android.mk 自动读入CPP

    ***************************************转载请注明出处:http://blog.csdn.net/lttree************************** ...

  10. 使用CXF发布WebService服务简单实例

    一.说明: 前面介绍了使用axis2来发布Webservice服务,现在介绍一种更popular,更高效的Webservice服务发布技术:CXF Apache CXF = Celtix + XFir ...